On cartesian product of commutative, self-distributive and transitive BE-algebra
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0054Abstract
In this paper we develop the idea of cartesian product of BE- algebras. Furthermore we introduced the cartesian product on commutative, self-distributive and transitive BE-algebras.
Keywords:
BE-algebra, commutative BE-algebra,, self-distributive BE-algebra, transitive BE-algebraMathematics Subject Classification:
Mathematics- Pages: 1650-1652
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
A. Walendziak, On commutative BE-algebras, Sci. Math. Japon, 2008, 585-588.
H. S. Kim and Y. H. Kim, On BE algebras, Sci . Math. Jpn., 66(1)(2007), 113-116.
J. Negger and H. S. Kim, On $d$-algebras, Math. Slovac., 40(1)(1999), 19-26.
K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonicae, 23(1)(1978), 1-26.
K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ., 8(1980), 125-130.
K. H. Kim and Y. H. Yon, Dual BCK-algebra and M.V algebra, Sci . Math. Japan, 66(2007), 247-253.
K. Pathak and P. Sabhapandit, A particular poset and some special types of functions on BE-algebra, Malaya Journal of Matematik, 1(2020), 479-481.
P. Sabhapandit and K. Pathak, On dual multipliers in CIalgebras, Advances in Mathematics: A Scientific Journal, 9(4)(2020), 1819-1824.
Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(2)(1983), 313-320.
S.S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean. Math. Soc, 46(2)(2009), 281287.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.