Dominating function in intuitionistic fractional graph
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0055Abstract
In this paper, definition of intuitionistic fractional star graph, intuitionistic fractional bistar graph and intuitionistic fractional wheel graph has been introduced and we also define dominating function, minimal dominating function, intuitionistic fractional domination number \(\left(\gamma_{i_f}(G)\right)\) and upper intuitionistic fractional domination number \(\left(\Gamma_{i_f}(G)\right)\) of an intuitionistic fuzzy graph(IFG). We derived these parameters for a path, cycle, star, bistar and wheel of an intuitionistic fractional graph.
Keywords:
Intuitionistic fractional graph(IFG), intuitionistic fractional domination number, intuitionistic fractional star graph, intuitionistic fractional bistar graph,, intuitionistic fractional wheel graphMathematics Subject Classification:
Mathematics- Pages: 1653-1660
- Date Published: 01-01-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
K. Ameenal Bibi and M. Devi, Fuzzy Bi-Magic labeling on Cycle Graph and Star graphs,Glob. J. Pur. App. Math., 6 (2017), 1975-1985.
K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, New York, 1999.
J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications, MacMillan, London, 976(1-25).
E. J. Cockayne, G. Fricke, S. T. Hedetniemi and C. M. Mynhardt, Properties of minimal dominating functions of graphs, ARS Combin., 41(1995), 107-115.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc., New York, (1998).
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,Marcel Dekker Inc., New York, (1998).
S. M. Hedetniemi, S. T. Hedetniemi and T. V. Wimer, Linear time resource allocation algorithms for trees, Tech. Rept., URI- 014, Department of Mathematical Sciences, Clemson University (1987).
M. G. Karunambigai and R. Parvathi, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications, 2006, 139-150.
A. NagoorGani and S. Shajitha Begum, Degree order and size in Intuitionistic fuzzy Graphs, International Journal of Algorithms, Comput. Mathe., 3(3)(2010), 1-10.
E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, John Wiley and Sons Inc., (1997).
K. Thirusangu and D. Jeevitha, Fuzzy Bimagic and Anti Magic Labelling in Star Graphs, Inter. J. Math. Tren. Tech., Special Issue, NCCFQET (2018), 1-11.
- NA
Similar Articles
- Kulajit Pathak, Pulak Sabhapandit, On cartesian product of commutative, self-distributive and transitive BE-algebra , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.