Generating functions for generalized tribonacci and generalized tricobsthal polynomials
Downloads
DOI:
https://doi.org/10.26637/mjm1003/008Abstract
In this work, we consider generating functions which are generalized tribonacci polynomials \(T_{n}(x)\) and generalized tricobsthal polynomials \(J_{n}(x)\) which are defined in [7]. We derive generating functions for \((m+n)\)-th order of generalized tribonacci polynomials and generalized tricobsthal polynomials for \(m\ge 2\). Furthermore, we obtain various families of bilinear and bilateral generating functions and give their special cases for these polynomials. Also, we obtain the summation formula of generalized tribonacci polynomials and generalized tricobsthal polynomials.
Keywords:
generalized tricobsthal, generalized tribonacci polynomials, bilinear and bilateral generating functionsMathematics Subject Classification:
11B83, 11C08, 33C45.- Pages: 267-279
- Date Published: 01-07-2022
- Vol. 10 No. 03 (2022): Malaya Journal of Matematik (MJM)
N. Özmen and E. Erkus-Duman, Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558(1)(2013), 1124-1127.
N. Özmen and E. Erkus-Duman, On the Poisson-Charlier polynomials, Serdica Math. J., 41(4)(2015), 457-470.
N. Özmen and E. Erkus-Duman, Some families of generating functions for the generalized Cesáro polynomials, J. Comput. Anal. Appl., 25(4)(2018), 670-683.
N. Özmen, Some new properties of the Meixner polynomials, Sakarya University Journal of Science., 21(6)(2017), 1454 - 1462.
T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience Publication,(2001).
A. Tereszkiewicz and I. Wawreniuk, Generalized Jacobsthal polynomials and special points for them, Appl. Math. Comput., 268(2015), 806-814.
B. Rybolowicz and A. Tereszkiewicz, Generalized tricobsthal and generalized tribonacci polynomials, Appl. Math. Comput., 325(2018), 297-308.
A. Altin and E. Erkus, On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transforms and Spec. Funct., 17(4)(2006), 239-244.
W.-C.C. Chan, C.-J. Chyan And H. M. SRivastava, The Lagrange polynomials in several variables, Integral Transforms and Spec. Funct., 12(4)(2001), 139-148.
N.F. Yalçin, D. Taşciand E. Erkuş-Duman, Generalized Vieta-Jacobsthal and Vieta-Jacobsthal-Lucas polynomials, Math. Commun., 20(2015), 241-251.
N. TUĞLU And E. Erkuş-DUman, Generating functions for the generalized bivariate Fibonacci and Lucas polynomials, J. Comput Anal. Appl., 18(5)(2015), 815-821.
E.G. Kocer And H. Gedikce, Trivariate Fibonacci and Lucas polynomials, Konuralp Journal of Mathematics, $mathbf{4 ( 2 ) ( 2 0 1 6 ) , ~ 2 4 7 - 2 5 4 . ~}$
T. Mansour And M. Shattuck, Polynomials whose coefficients are generalized tribonacci numbers, Appl. Math. Comput, 219(2013), 8366-8374.
A. Ozkoc And A. PorsuK, A note for the (p;q)-Fibonacci and Lucas quaternions polynomials, Konuralp Journal of Mathematics, 5(2)(2017), 36-46.
A. Özkoç ÖztÜrk And A. Porsuk, Some remarks regarding the (p;q)-Fibonacci and Lucas octonion polynomials, Universal Journal of Mathematics and Applications, 1(1)(2018), 46-53.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nejla Özmen, Arzu Özkoç Öztürk
This work is licensed under a Creative Commons Attribution 4.0 International License.