On decomposition of intuitionistic fuzzy primary submodules

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0065

Abstract

This article is in continuation to author’s previous paper, on intuitionistic \(L\)-fuzzy primary and \(P\)-primary submodules, Malaya Journal of Mathematik, Vol. 8, no. 4, 2020, pp. 1417-1426. In this paper, we explore the decomposition of intuitionistic fuzzy submodule as the intersection of finite many intuitionistic fuzzy primary submodules. Many other forms of decomposition like irredundant and normal decomposition are also investigated.

Keywords:

Residual quotient, Intuitionistic fuzzy primary decomposition, Irredundant and normal intuitionistic fuzzy primary decomposition, Intuitionistic fuzzy primary ideal (submodules)

Mathematics Subject Classification:

Mthematics
  • P. K. Sharma Post-Graduate Department of Mathematics, DAV College, Jalandhar, Punjab, India
  • Kanchan Research Scholar IKGPT University, Jalandhar, Punjab, India.
  • D.S. Pathania Depatment of Mathematics, GNDEC Ludhiana, Punjab, India.
  • Pages: 1708-1712
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

A. Amini, B. Amini and H. Sharif, Shiraz, Prime and primary submodule of certain modules, Czechoslovak Mathematical Journal, 56(131) (2006), 641-648.

K.T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg, (1999).

I. Bakhadach., S. Melliani, M. Oukessou, and S.L. Chadli, Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, Notes on Intuitionistic Fuzzy Sets, 22(2)(2016), 59-63.

D. K. Basnet, Topics in Intuitionistic Fuzzy Algebra, Lambert Academic Publishing, ISBN: 978-3-8443-91473, 2011.

K. Meena and K. V. Thomas, Intuitionistic L-Fuzzy Subrings, International Mathematical Forum, 6(52)(2011) $2561-2572$

Y.B. Jun, M.A.O. zturk, and C.H. Park, Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Information Sciences, 177(2007), 4662-4677.

B.B. Makamba and V. Murali, (2000), Primary Decompositions of Fuzzy Submodules, Journal of Fuzzy Mathematics, 8(2000), 817-830.

M. Palanivelrajan, and S. Nandakumar, Some operations of intuitionistic fuzzy primary and semi-primary ideal, Asian Journal of Algebra, 5(2)(2012), 44-49.

P.K. Sharma and Gagandeep Kaur, Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, International Journal of Computer Science and Information Technology, 9(4)(2017), 1-15.

P.K. Sharma, Kanchan, On intuitionistic L-fuzzy prime submodules, Annals of Fuzzy Mathematics and Informatics, 16(1)(2018), 87-97.

P.K. Sharma, Kanchan, On decomposition of intuitionistic fuzzy prime submodules, Notes on Intuitionistic Fuzzy Sets, 26(2)(2020), 25-32.

P.K. Sharma, Kanchan, On intuitionistic L-fuzzy primary and P-primary submodules, Malaya Journal of Matematik, 8(4)(2020), 1417-1428.

R. Sudhir Ghorpade and J. K. Verma, Primary Decomposition of Modules, Lecture Notes, IIT Bombay, 2000.

Y. Tlras, and A. Harmancl, On Prime Submodules and Primary Decomposition, Czech. Math. J., 50(125) (2000), $83-90$.

L.A. Zadeh, Fuzzy sets, Inform. Control., 8(1965), 338353.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

P. K. Sharma, Kanchan, and D.S. Pathania. “On Decomposition of Intuitionistic Fuzzy Primary Submodules”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1708-12, doi:10.26637/MJM0804/0065.