Some trapezoid type inequalities for functions of two variables via generalized fractional integrals

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0067

Abstract

In this paper, we establish some trapezoid type integral inequalities for functions of two variables involving generalized fractional integrals. The results presented here provide extensions of those given in earlier works.

Keywords:

Trapezoid type inequality, fractional integrals, bounded functions

Mathematics Subject Classification:

mathematics
  • Pages: 1719-1727
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

A.A. Aljinović, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral, $J$. Math., (2014), Art. ID 503195, pp. 6.

A.O. Akdemir, Inequalities of Ostrowski's type for $m$ and $(alpha, m)$-logarithmically convex functions via RiemannLiouville fractional integrals, J. Comput. Anal. Appl., 16(2) (2014), 375-383.

N.S. Barnett and S.S. Dragomi, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math., 27(1)(2001), 109-114.

H. Budak, M.Z. Sarikaya and E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized $s$-convex in the second sense, J. Appl. Math. Comput. Mech., 15(4) (2016), 1121.

H. Budak and P. Agarwal, On Hermite-Hadamard type inequalities for co-ordinated convex mappings utilizing generalized fractional integrals, accepted as an Book Chapter, Fractional Differentiation and its Applications, Springer.

${ }^{[6]}$ S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38(11-12) (1999), 33-37.

S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc. $60(3)(1999), 495-508$.

${ }^{[8]}$ S.S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. , 4(1) (2001), 59-66.

S. S. Dragomir, A refinement of Ostrowski's inequality for absolutely continuous functions whose derivatives belong to $L_{infty}$ and applications, Libertas Math., 22 (2002), 49-63.

S. S. Dragomir, Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin), 34(2)(2014), 223-240.

S. S. Dragomir, Ostrowski type inequalities for RiemannLiouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, RGMIA Res. Rep. Coll., 20(2017), Art. 48.

S. S. Dragomir, Ostrowski and trapezoid type inequalities for Riemann-Liouville fractional integrals of absolutely continuous functions with bounded derivatives, RGMIA Res. Rep. Coll., 20 (2017), Art 53.

S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art 58.

S. S. Dragomir, On some trapezoid type inequalities for generalized Riemann-Liouville fractional integrals, RGMIA Res. Rep. Coll., 20 (2017), Art 68, pp. 12.

S. S. Dragomir, On some Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals, RGMIA Res. Rep. Coll., 20 (2017), Art 67, pp. 13.

S. Erden and M. Z. Sarikaya, On the Hermite-Hadamard type and Ostrowski type inequalities for the co-ordinated convex functions, Palestine Journal of Mathematics, 6(1)(2017), 257-270.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

A. G.-Lakoud and F. Aissaoui, New fractional inequalities of Ostrowski type, Transylv. J. Math. Mech., 5(2)(2013), 103-106.

M. A. Latif, S. Hussain and S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, Transylv. J. Math. Mech., 4(2)(2012), 125-136.

M. A. Latif, S.S. Dragomir and A. E. Matouk, New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J. Fract. Calc. Appl., 2(1)(2012), 1-10.

M. A. Latif and S.S. Dragomir, New Ostrowski type inequalities for co-ordinated $s$-convex functions in the second sense, Le Matematiche, 67(1)(2012), 57-72.

M. Mudassar and N. Siddıquı and M. Iqbal, On coordinated Ostrowski and Hadamard's type inequalities for convex functions II, TJMM, 9(1), (2017), 35-42.

A. Ostrowski, Über die Absolutabweichungeinerdifferentiierbarenfunktion von ihremintegralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.[24] M. Z. Sarikaya and H. Filiz, Note on the Ostrowski type inequalities for fractional integrals, Vietnam J. Math., 42(2) (2014), 187-190.

M. Z. Sarikaya and M. K. Yildiz, Generalization and improvement of Ostrowski type inequalities, AIP Conference Proceedings, 1991, 020031 (2018); doi: 10.1063/1.5047904.

M. Z. Sarikaya, H. Budak, H. Yaldiz, Some new Ostrowski type inequalities for co-ordinated convex functions, Turkish Journal of Analysis and Number Theory, $2(5)(2014), 176-182$.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

Kubilay Özçelik, and Hu¨seyin Budak. “Some Trapezoid Type Inequalities for Functions of Two Variables via Generalized Fractional Integrals”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1719-27, doi:10.26637/MJM0804/0067.