Eccentric domination number of some path related graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0068

Abstract

In a graph \(G\), a vertex \(u\) is said to be an eccentric vertex of a vertex \(v\) if \(d(u, v)=\) eccentricity of vertex \(v\). A dominating set \(D\) of a graph \(G=(V, E)\) is said to be an eccentric dominating set if for every \(v \in V-D\), there exists at least one eccentric vertex of \(v\) in \(D\). The minimum cardinality of the minimal eccentric dominating sets of graph \(G\) is said to be eccentric domination number of graph \(G\) which is denoted by \(\gamma_{e d}(G)\). Here, exact value of \(\gamma_{e d}(G)\) for some path related graphs, have been investigated.

Keywords:

Dominating set, eccentric dominating set, eccentric domination number

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India.
  • D. M. Vyas Department of Mathematics, V.V.P. Engineering College, Rajkot-360005, Gujarat, India.
  • Pages: 1728-1734
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, Boston, (2005).

J. Clark and D. A. Holton, A First Look at Graph Theory, Allied Publishers Ltd., (1995).

E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total Domination in Graphs, Networks, (10) (1980), 211-219.

S. Ao, E. J. Cockayne, G. MacGillivray and C. M. Mynhardt, Domination Critical Graphs with Higher Independent Domination Numbers, J. Graph Theory, (22) (1996), $9-14$.

T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., (1998).

T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric Domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio Technology, 1(2) (2010), 1-16.

V. Swaminathan and K. M. Dharmalingam, Degree Equitable Dominations on Graphs, Kragujevac Journal of Mathematics, 35(1) (2011), 191-197.

J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Mathematics, (10) (1997), 529-550.

S. K. Vaidya and R. N. Mehta, Steiner Domination Number of Some Wheel Related Graphs, International Journal of Mathematics and Soft Computing, 5(2) (2015), 15-19.

S. K. Vaidya and R. M. Pandit, Some New Results on Global Dominating Sets, ISRN Discrete Mathematics, (2012), 1-6.

S. K. Vaidya and K. M. Popat, On Equienergetic, Hyperenergetic and Hypoenergetic Graphs, Kragujevac Journal of Mathematics, Volume 44(4) (2020), 523-532.

S. K. Vaidya and K. M. Popat, Some Borderenergetic and Equienergetic Graphs of Arbitrarily Large Order, (Communicated).

D. B. West, Introduction to Graph Theory, Prentice - Hall of India, New Delhi, (2003).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

S. K. Vaidya, and D. M. Vyas. “Eccentric Domination Number of Some Path Related Graphs”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1728-34, doi:10.26637/MJM0804/0068.