Eccentric domination number of some path related graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0068Abstract
In a graph \(G\), a vertex \(u\) is said to be an eccentric vertex of a vertex \(v\) if \(d(u, v)=\) eccentricity of vertex \(v\). A dominating set \(D\) of a graph \(G=(V, E)\) is said to be an eccentric dominating set if for every \(v \in V-D\), there exists at least one eccentric vertex of \(v\) in \(D\). The minimum cardinality of the minimal eccentric dominating sets of graph \(G\) is said to be eccentric domination number of graph \(G\) which is denoted by \(\gamma_{e d}(G)\). Here, exact value of \(\gamma_{e d}(G)\) for some path related graphs, have been investigated.
Keywords:
Dominating set, eccentric dominating set, eccentric domination numberMathematics Subject Classification:
Mathematics- Pages: 1728-1734
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, Boston, (2005).
J. Clark and D. A. Holton, A First Look at Graph Theory, Allied Publishers Ltd., (1995).
E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total Domination in Graphs, Networks, (10) (1980), 211-219.
S. Ao, E. J. Cockayne, G. MacGillivray and C. M. Mynhardt, Domination Critical Graphs with Higher Independent Domination Numbers, J. Graph Theory, (22) (1996), $9-14$.
T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., (1998).
T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric Domination in Graphs, International Journal of Engineering Science, Advanced Computing and Bio Technology, 1(2) (2010), 1-16.
V. Swaminathan and K. M. Dharmalingam, Degree Equitable Dominations on Graphs, Kragujevac Journal of Mathematics, 35(1) (2011), 191-197.
J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Mathematics, (10) (1997), 529-550.
S. K. Vaidya and R. N. Mehta, Steiner Domination Number of Some Wheel Related Graphs, International Journal of Mathematics and Soft Computing, 5(2) (2015), 15-19.
S. K. Vaidya and R. M. Pandit, Some New Results on Global Dominating Sets, ISRN Discrete Mathematics, (2012), 1-6.
S. K. Vaidya and K. M. Popat, On Equienergetic, Hyperenergetic and Hypoenergetic Graphs, Kragujevac Journal of Mathematics, Volume 44(4) (2020), 523-532.
S. K. Vaidya and K. M. Popat, Some Borderenergetic and Equienergetic Graphs of Arbitrarily Large Order, (Communicated).
D. B. West, Introduction to Graph Theory, Prentice - Hall of India, New Delhi, (2003).
- NA
Similar Articles
- Kubilay Özçelik, Hu¨seyin Budak, Some trapezoid type inequalities for functions of two variables via generalized fractional integrals , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.