Initial coefficient estimates for subclasses of bi-univalent functions
Downloads
DOI:
https://doi.org/10.26637/mjm1102/010Abstract
The purpose of the present paper is to introduce new subclasses of the function class $\Sigma$ of normalized analytic and bi-univalent functions in the open disk $\mathbb{U}$. We obtain estimates on the first two Taylor-Maclaurin coefficients $|a_{2}|$ and $|a_{3}|$ for functions of these subclasses.
Keywords:
Analytic functions, bi-univalent functions, coefficient bounds,, $q$-derivative operator, Taylor-Maclaurin seriesMathematics Subject Classification:
Mathematics- Pages: 219-227
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
L. D. B RANGES , A proof of the biberbach conjecture,Acta. Math., 154(1985), 137–152. DOI: https://doi.org/10.1007/BF02392821
S. B ULUT , Certain subclasses of analytic and bi-univalent functions involving the q-
derivative operator,Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66(1)(2017), 108–114,
https://doi.org/10.1501/Commua1- 0000000780.
D. A. B RANNAN , J. C LUNIE AND W. E. K IRWAN , Coefficient estimates for a class of starlike functions, Canad.J. Math., 22(1970), 476–485. DOI: https://doi.org/10.4153/CJM-1970-055-8
D. A. B RANNAN AND J. C LUNIE (E DS .) , Aspect of contemporary complex analysis,Proceedings of the NATO Advance Study Institute held at the University of Durham, Durham, July 1-20, 1979, Academic Press, New York and London, 1980.
D. A. B RANNAN AND W. E. K IRWAN , On some classes of bounded univalent functions, J. London Math. Soc., 2(1)(1969), 431–443. DOI: https://doi.org/10.1112/jlms/s2-1.1.431
D. A. B RANNAN AND T. S. T AHA , On some classes of bi-univalent functions, in Mathematical Analysis and
its Applications, S. M. Mazhar, A. Hamoui, N. S. Faour (Eds.) Kuwait; Februay 18-21, 1985, in : KFAS
Proceedings Series, Vol. 3. Pergamon Press, Elsevier science Limited, Oxford, 1988, pp. 53-60.
N. E. C HO AND J. A. K IM , Inclusion Properties of certain subclasses of analytic
functions defined by a multiplier transformation, Compt. Math. Appl., 52(2006),323–330,
https://doi.org/10.1016/j.camwa.2006.08.022. DOI: https://doi.org/10.1016/j.camwa.2006.08.022
J. H. C HOI , M. S AIGO AND H.M. S RIVASTAVA , Some inclusion properties of a certain family of integral
operators, J. Math. Anal. Appl., 276(2002), 432–445, https://doi.org/10.1016/S0022-247X(02)00500-0. DOI: https://doi.org/10.1016/S0022-247X(02)00500-0
P. L. D UREN ,Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-
Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
S. S. D ING , Y. L ING AND G. J. B AO , Some properties of a class of analytic functions, J. Math. Anal. Appl.,
(1995), 71–81.
B. A. F RASIN AND M. K. A OUF , New subclass of bi-univalent functions, Appl. Math. lett., 24(2011), 1569–
, https://doi.org/10.1016/j.aml.2011.03.048 DOI: https://doi.org/10.1016/j.aml.2011.03.048
G. G ASPER AND M. R AHMAN , Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
S. G. H AMIDI AND J. M. J AHANGIRI , Faberpolynomialcoefficientestimatesforbi-univalentfunctionsdefined by subordinations, Bull. Iranian Math. Soc., 41(5)(2015), 1103–1119.
F. H. J AKSON , On q-definite integrals, Quart. J. pure Appl. Math., 41(1910), 193–203.
J. M. J AHANGIRI AND S. G. H AMIDI , Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Article ID 190560 (2013), 4 pp, https://doi.org/10.1155/2013/190560. DOI: https://doi.org/10.1155/2013/190560
J. M. J AHANGIRI AND S. G. H AMIDI , Advances on the coefficient bounds for m-fold symmetric bi-close-to-convex functions, Tbilisi Math. J., 9(2)(2016), 75–82, https://doi.org/10.1515/tmj-2016-0021. DOI: https://doi.org/10.1515/tmj-2016-0021
M. L EWIN , On a coefficient problem for bi-univalent functions,Proc. Amer. Math. Soc., 18(1967), 63–68. DOI: https://doi.org/10.1090/S0002-9939-1967-0206255-1
E. N ETANYAHU , The minimal distance of the image boundary from the origin and second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32(1969), 100–112. DOI: https://doi.org/10.1007/BF00247676
S. P ORWAL AND M. D ARUS , On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21(2013),
–193, https://doi.org/10.1016/j.joems.2013.02.007. DOI: https://doi.org/10.1016/j.joems.2013.02.007
M. G. S HRIGAN , Coefficient estimates for certain class of bi-univalent functions associated with κ-Fibonacci Numbers, Gulf Journal of Mathematics, 14(2022), 192–202, https://doi.org/10.56947/gjom.v14i1.1096. DOI: https://doi.org/10.56947/gjom.v14i1.1096
M. G. S HRIGAN AND P. N. K AMBLE , Fekete-Szegö problem for certain class of Bi-stralike Functions
involving q-differential operator, J. Combin. Math. Combin. Comput., 112(2020), 65–73.
H. M. S RIVASTAVA , S. B ULT AND M.C¸ A ˘ GLAR , Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), 831–842, https://doi.org/10.2298/FIL13058315 DOI: https://doi.org/10.2298/FIL1305831S
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mallikarjun Shrigan, P. N. Kamble
This work is licensed under a Creative Commons Attribution 4.0 International License.