The chain structure of intuitionistic level subgroups in cyclic groups of order \(pq\)
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0081Abstract
It is well known that the set of all level subgroups of any fuzzy subgroup of a finite group forms a chain. In this paper we prove that this result does not extend to Intuitionistic Fuzzy Subgroups (IFSGs) by providing a counter-example. For any two distinct prime numbers \(p\) and \(q\), we prove that the cyclic group \(\mathbb{Z}_{p q}\) has 36 non-isomorphic IFSGs. The Intuitionistic Level Subgroups (ILSGs) of only 28 of them form chains, while those of remaining 8 do not form chains. The list of all the 36 distinct IFSGs is also provided; and those whose ILSGs form a chain, and not, are identified. The case is illustrated using a specific example. We have also obtained a characterisation of IFSGs of \(\mathbb{Z}_{p q}\), whose ILSGs form a chain.
Keywords:
Intuitionistic fuzzy set, intuitionistic fuzzy subgroup, level subgroup, isomorphism, cyclic groupMathematics Subject Classification:
Mathematics- Pages: 1818-1823
- Date Published: 01-01-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Atanassov K. T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
Biswas R., Intuitionistic Fuzzy Subgroups, Mathematical Forum, X (1996), 39 - 44
Burton. David M., Elementary Number Theory, Seventh Edition, Mc Graw Hill, New York, (2011)
Daise S. D. M. and Tresa S. D. M., On Level Subgroups of Intuitionistic Fuzzy Groups, J. Comp. Math. Sci., 7(11) (2016), 606 - 612
Daise S. D. M., Tresa S. D. M., Fernandez S., Intuitionistic Level Subgroups of Intuitionistic Fuzzy Groups, Pro ceedings of International Conference of Mathematics (ICM 2018), (2018), 78-82
Daise S. D. M., Tresa S. D. M., Fernandez S., On Isomorphism of Intuitionistic Fuzzy Sets (Communicated).
Daise S. D. M., Tresa S. D. M., Fernandez S., Intuitionistic Level Subgoups in Cyclic Groups of Order $p^n$ (Communicated).
Das P. S., Fuzzy Groups and Level Subgroups, J. Math. Anal. Appl., 84 (1981), 264 - 269.
Palaniappan N, Naganathan S, Arjunan K, A Study on Intuitionistic L-Fuzzy Subgroups, Applied Mathematical Sciences, 3(53)(2009), 2619 - 2624
Rosenfeld A., Fuzzy Groups, J. Math. Anal. Appl., 35 (1971), 512 - 517.
Sebastian S., Babu Sunder, Fuzzy groups and group homomorphisms, Fuzzy Sets and Systems, 81(1996), 397 401.
Sharma P. K., Intuitionistic Fuzzy Groups, International Journal of Data Warehousing and Mining, 1(1)(2011), $1-10$.
Tae-Chon. Ahn, Hur. Kul, Jang. Kyung-Won, Intuitionistic Fuzzy Subgroups and Level Subgroups, International Journal of Fuzzy Logic and Intelligent Systems, 6(3)(2006), 240 - 246.
Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965), 338-353.
- NA
Similar Articles
- R. Vijayalakshmi, A. Savitha Mary , Neutrosophic semi Volterra spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.