On maximal, minimal \(\mu\)-open and \(\mu\)-closed sets
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0083Abstract
In this paper, we introduce and study cleanly \(\mu\)-covered spaces along with two strong separation axioms in generalized topological spaces. Strong separation axioms are investigated by means of minimal \(\mu\)-open and \(\mu\)-closed sets of generalized topological spaces.
Keywords:
\(\mu\)-open set, \(\mu\)-closed set, maximal \(\mu\)-open set, minimal \(\mu\)-open set, cleanly \(\mu\)-coveredMathematics Subject Classification:
mathematics- Pages: 1830-1833
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (1-2) (2005), 53-66.
Á. Császár, Generalized open sets, Acta Math. Hungar., 75 (1-2) (1997), 65-87.
S. Al Ghour, A. Al-Omari, T. Noiri, On homogeneity and homogeneity components in generalized topological spaces, Filomat, 27 (6) (2013), 1097-1105.
N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt, 53 (1982), 47-53.
A. Mukharjee, On maximality and minimality of $mu$-open and $mu$-closed sets, An. Univ. Oradea Fasc. Mat., 23 (2) (2016), 15-19.
T. Noiri, Unified characterizations of modifications of $R_0$ and $R_1$ topological spaces, Rend. Circ. Mat. Palermo (2), 55 (2006). $29-42$
A. Deb Ray and R. Bhowmick, $mu$-paracompact and $g_{mu^{-}}$ paracompact generalized topological spaces, Hacet. J. Math. Stat., 45 (2) (2016), 447-453.
B. Roy, Application of operation on minimal generalized open sets, Afrika Mat. 29 (2018), 1097-1104.
B. Roy and R. Sen, On maximal $mu$-open and $mu$-closed sets via generalized topology, Acta Math. Hungar., 136 (4)(2012), 233-239.
M. S. Sarsak, On $mu$-compact sets in $mu$-spaces, Questions Answers Gen. Topology, 31 (2013), 49-57
- NA
Similar Articles
- V. Banu Priya, S. Chandrasekar, M. Suresh, Neutrosophic \(\alpha\)-generalized semi homeomorphisms , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- T. Rajesh Kannan, S. Chandrasekar, Neutrosophic \(P R E-\alpha, S E M I-\alpha\) and \(P R E-\beta\) irresolute open and closed mappings in neutrosophic topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.