On nearly recurrent Riemannian manifolds

Downloads

DOI:

https://doi.org/10.26637/mjm1102/008

Abstract

The object of the present paper is to introduce a type of recurrent Riemannian manifold called nearly recurrent Riemannian manifold . The existence of nearly recurrent Riemannian manifold have been proved by non trivial example.

Keywords:

Nearly recurrent manifold, cyclic Ricci tensor, codazzi type Ricci tensor, concurrent vector field.

Mathematics Subject Classification:

General Mathematics
  • Pages: 200-209
  • Date Published: 01-04-2023
  • Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)

H.S. R USE , On simply harmonic space, J. London Math..Soc., 21(1946), https://doi.org/10.1112/jlms/s1- DOI: https://doi.org/10.1112/jlms/s1-21.4.243

4.243.

E.M. P AATTERSO , Some theorem on Ricci-recurrent space, J. London. Math. Soc., 27(1952), 287-295,

https://doi.org/10.1112/jlms/s1-27.3.287. DOI: https://doi.org/10.1112/jlms/s1-27.3.287

A.G.W ALKER , On ruse spaces of recurrent curvature, Proc. London Math. Soci., 52, (1951). DOI: https://doi.org/10.1112/plms/s2-52.1.36

H. S INGH AND Q. K HAN , On symmetric Riemannian manifolds, Novi sad J. Math., 29(3)(1999), 301-308.

H. S INGH AND Q. K HAN , On generalized recurrent Riemannian manifolds, Publ. Math. Debrecen, 56(1-

(2000), 87-95, https://doi.org/10.5486/PMD.2000.2139. DOI: https://doi.org/10.5486/PMD.2000.2139

U.C. D E , N. G UHA AND D. K AMILYA , On generalized recurrent manifolds, National Academy of Math. India,

(1)(1991), 1-4.

B ANDYAOPADHYAY , M AHUYA , On generalized ϕ-recurrent -Sasakian manifolds, Mathematica Pannonica, 22(1)(2011), 19-23.

D.G. P RAKASHA AND A. Y ILDIZ , Generalized ϕ-recurrent Lorentzian α-Sasakian manifold, Common

Fac.Sci.Uni. Ank. Series A1, 59 (1)(2010), 53–62, https://doi.org/10.1501/Commua1 0000000656.

Q. K HAN , On generalized recurrent Sasakian manifold with special curvature tensor J(X,Y,Z), Ganita,

(2)(2017), 189–194.

B. P RASAD , On semi-generalized recurrent manifold, Mathematica Balkanica New Series, 14(2000), 1–4.

J.P. S INGH , A. S INGH AND R AJESH K UMAR , On a type of Semi generalized recurrent P-Sasakian manifold, Facta Universitatis (NIS) Ser. Math. Inform, 31(1)(2016), 213–225.

J.P. S INGH , A. S INGH AND R AJESH K UMAR , On a type of Semi generalized recurrent Lorentzian α-Sasakian manifold, Bull. Cal. Math. Soc., 107 (5)(2015), 357–370.

J.C HAUDHARY , R AJESH K UMAR , AND J.P. S INGH , Semi generalized ϕ-recurrent trans-Sasakian manifold, Facta Universitatis (NIS) Ser. Math. Inform, 31(4)(2016), 863–871.

H.S. R USE , Three dimensional spaces of recurrent curvature, Pro. London Math. Soc., 50 (2)(1947), 438–

, https://doi.org/10.1112/plms/s2-50.6.438. DOI: https://doi.org/10.1112/plms/s2-50.6.438

S.K OBAYASHI AND K. N OMIZU , Foundation of Differential Geometry, Vol.1, Interscience publishers, New York, (1963).

P. D ESAI AND K. A MUR , On symmetric spaces, Tensor N.S., 29(1975), 119–124.

D.A. F ERUS , A remark on Codazzi tensor on constant curvature space, lecture notes math.

, Global differential geometry and global analysis, Springer Verlag, New York, (1981),

https://doi.org/10.1007/BFb0088868. DOI: https://doi.org/10.1007/BFb0088868

L.P. E ISENHERT , Riemannian Geometry, Princeton University Press, Princetone, N.J., (1949).

N.J. H ICKS , Notes on Differential Geometry, D.Van Nostrand company Inc. Princeton, New York, (1965).

  • NA

Metrics

Metrics Loading ...

Published

01-04-2023

How to Cite

B. PRASAD, and R.P.S. YADAV. “On Nearly Recurrent Riemannian Manifolds”. Malaya Journal of Matematik, vol. 11, no. 02, Apr. 2023, pp. 200-9, doi:10.26637/mjm1102/008.