A study on bipolar valued multi \(I\)-fuzzy subhemirings of a hemiring
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0087Abstract
In this paper, bipolar valued multi \(I\)-fuzzy subhemiring of a hemiring is introduced and some properties are discussed. Bipolar valued multi \(I\)-fuzzy subhemiring of a hemiring is a generalized form of bipolar valued multi fuzzy subhemiring of a hemiring. The paper will be useful to further research.
Keywords:
Interval valued fuzzy subset, bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, union, product, bipolar valued \(I\)-fuzzy subset, bipolar valued multi \(I\)-fuzzy subset, strongest, intersection, bipolar valued multi \(I\)-fuzzy subhemiringMathematics Subject Classification:
mathematics- Pages: 1859-1866
- Date Published: 01-01-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. Appl. 11(1985), 283-291.
M.S. Anitha, Muruganantha Prasad and K. Arjunan, Notes on bipolar valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, 2(3), (2013), 52-59.
Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications, 35(1971), 512-517.
A. Balasubramanian, K.L. Muruganantha Prasad and K. Arjunan, Properties of Bipolar interval valued fuzzy subgroups of a group, International Journal of Scientific Research, 4(4), (2015), 262-268.
Grattan Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z. Math. Logik. Grundladen Math, 22(1975), 149-160.
K.M. Lee, bipolar valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
K.M. Lee, Comparison of interval valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets, J. fuzzy Logic Intelligent Systems, 14(2), (2004), 125-129.
${ }^{[8]}$ K. Murugalingam and K. Arjunan, A study on interval valued fuzzy subsemiring of a semiring, International Journal of Applied Mathematics Modeling, 1(5), (2013), $1-6$.
S. Muthukumaran and B. Anandh, Some theorems in bipolar valued multi fuzzy subnearring of a nearing, $I n$ fokara, 8(11), (2019).
Sabu Sebastian, T.V. Ramakrishnan, Multi fuzzy sets, International Mathematical Forum, 5(50), (2010), 24712476.
V.K Santhi and K. Anbarasi, Bipolar valued multi fuzzy subhemirings of a hemiring, Advances in Fuzzy Mathematics, 10(1), (2015), 55-62.
M.G. Somasundra Moorthy, A study on interval valued fuzzy, anti fuzzy, intuitionistic fuzzy subrings of a ring, Ph.D Thesis, Bharathidasan University, Trichy, Tamilnadu, India (2014).
B. Yasodara and KE. Sathappan, Bipolar-valued multi fuzzy subsemirings of a semiring, International Journal of Mathematical Archive, 6(9), (2015), 75-80.
L.A. Zadeh, fuzzy sets, Inform. And Control, 8(1965), $338-353$.
- NA
Similar Articles
- R. Vijayalakshmi, A. P. Mookambika , Properties of neutrosophic nano semi open sets , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.