A study on bipolar valued multi \(I\)-fuzzy subhemirings of a hemiring

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0087

Abstract

In this paper, bipolar valued multi \(I\)-fuzzy subhemiring of a hemiring is introduced and some properties are discussed. Bipolar valued multi \(I\)-fuzzy subhemiring of a hemiring is a generalized form of bipolar valued multi fuzzy subhemiring of a hemiring. The paper will be useful to further research.

Keywords:

Interval valued fuzzy subset, bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, union, product, bipolar valued \(I\)-fuzzy subset, bipolar valued multi \(I\)-fuzzy subset, strongest, intersection, bipolar valued multi \(I\)-fuzzy subhemiring

Mathematics Subject Classification:

mathematics
  • K. Meenatchi PG and Research Department of Mathematics, H.H.The Rajah’s College, Pudukkottai-622001, Tamil Nadu, India.
  • M. Kaliraja PG and Research Department of Mathematics, H.H.The Rajah’s College, Pudukkottai-622001, Tamil Nadu, India.
  • Pages: 1859-1866
  • Date Published: 01-01-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. Appl. 11(1985), 283-291.

M.S. Anitha, Muruganantha Prasad and K. Arjunan, Notes on bipolar valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, 2(3), (2013), 52-59.

Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications, 35(1971), 512-517.

A. Balasubramanian, K.L. Muruganantha Prasad and K. Arjunan, Properties of Bipolar interval valued fuzzy subgroups of a group, International Journal of Scientific Research, 4(4), (2015), 262-268.

Grattan Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z. Math. Logik. Grundladen Math, 22(1975), 149-160.

K.M. Lee, bipolar valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.

K.M. Lee, Comparison of interval valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets, J. fuzzy Logic Intelligent Systems, 14(2), (2004), 125-129.

${ }^{[8]}$ K. Murugalingam and K. Arjunan, A study on interval valued fuzzy subsemiring of a semiring, International Journal of Applied Mathematics Modeling, 1(5), (2013), $1-6$.

S. Muthukumaran and B. Anandh, Some theorems in bipolar valued multi fuzzy subnearring of a nearing, $I n$ fokara, 8(11), (2019).

Sabu Sebastian, T.V. Ramakrishnan, Multi fuzzy sets, International Mathematical Forum, 5(50), (2010), 24712476.

V.K Santhi and K. Anbarasi, Bipolar valued multi fuzzy subhemirings of a hemiring, Advances in Fuzzy Mathematics, 10(1), (2015), 55-62.

M.G. Somasundra Moorthy, A study on interval valued fuzzy, anti fuzzy, intuitionistic fuzzy subrings of a ring, Ph.D Thesis, Bharathidasan University, Trichy, Tamilnadu, India (2014).

B. Yasodara and KE. Sathappan, Bipolar-valued multi fuzzy subsemirings of a semiring, International Journal of Mathematical Archive, 6(9), (2015), 75-80.

L.A. Zadeh, fuzzy sets, Inform. And Control, 8(1965), $338-353$.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2020

How to Cite

K. Meenatchi, and M. Kaliraja. “A Study on Bipolar Valued Multi \(I\)-Fuzzy Subhemirings of a Hemiring”. Malaya Journal of Matematik, vol. 8, no. 04, Jan. 2020, pp. 1859-66, doi:10.26637/MJM0804/0087.