On \(\mathcal I\) and \(\mathcal I^*\)-equal convergence in linear 2-normed spaces
Downloads
DOI:
https://doi.org/10.26637/mjm1102/004Abstract
In this paper we study the notion of \(\mathcal{I}\) and \(\mathcal{I^*}\)-equal convergence in linear 2-normed spaces and some of their properties. We also establish the relationship between them.
Keywords:
Ideal, \(\mathcal{I}\)-equal convergence , linear 2-normed spaces , \(\mathcal{I^*}\)-equal convergence , condition \((AP)\)Mathematics Subject Classification:
Ideal and statistical convergence, Convergence and divergence of series and sequences of functions, Convergence and divergence of series and sequences, Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)- Pages: 151-157
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
M.A RSLAN AND E. D¨UNDAR , I-convergence and I-Cauchy sequence of functions in 2-normed spaces,
Konuralp J. Math., 6 (1) (2018), 57–62. DOI: https://doi.org/10.1016/j.repl.2018.01.018
Z. B UKOVSK ´ A , Quasinormal convergence, Math. Slovaca., 41 (2) (1991), 137–146,
https://doi.org/10.1016/0166-8641(91)90098-7. DOI: https://doi.org/10.1016/0166-8641(91)90098-7
A.K. B ANERJEE AND A. B ANERJEE , I-convergence classes of sequences and nets in topological spaces,
Jordan J. Math. Stat., 11 (1) (2016), 13–31. DOI: https://doi.org/10.7748/ns.31.13.11.s11
A.K. B ANERJEE AND A. B ANERJEE , A study on I-Cauchy sequences and I-divergence in S-metric spaces,
Malaya J. Mat., 6 (2) (2018), 326–330, https://doi.org/10.26637/MJM0602/0004. DOI: https://doi.org/10.26637/MJM0602/0004
M. B ALCERZAK , K. D EMS AND A. K OMISARSKI , Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (1) (2007), 715–729, https://doi.org/10.1016/j.jmaa.2006.05.040. DOI: https://doi.org/10.1016/j.jmaa.2006.05.040
A.K. B ANERJEE AND R. M ONDAL , Rough convergence of sequences in a cone metric space, J. Anal., 27 (4)
(2019), 1179–1188, https://doi.org/10.1007/s41478-019-00168-2. DOI: https://doi.org/10.1007/s41478-019-00168-2
A. C S ´ ASZ ´ AR AND M. L ACZKOVICH , Discrete and equal convergence, Studia Sci. Math. Hungar., 10 (3-4)
(1975), 463–472.
A. C ASERTA , G. D I M AIO AND L.D. K O ˇ CINAC , Statistical convergence in function spaces, Abstr. Appl. Anal.,Art. ID 420419 (2011), 11 pp, https://doi.org/10.1155/2011/420419. DOI: https://doi.org/10.1155/2011/420419
P. D AS , S. D UTTA , On some types of convergence of sequences of functions in ideal context, Filomat, 27
(1) (2013), 157–164, https://doi.org/10.2298/FIL1301157D. DOI: https://doi.org/10.2298/FIL1301157D
P. D AS , S. D UTTA AND S.K. P AL , On I and I ∗ -equal convergence and an Egoroff-type theorem, Mat. Vesnik, 66 (2) (2014), 165–177.
H. F AST , Sur la convergence statistique, Colloq. Math., 2 (3-4) (1951), 241–244,
https://doi.org/10.4064/cm-2-3-4-241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244
J.A. F RIDY , On statistical convergence, Analysis, 5 (4) (1985), 301–313,
https://doi.org/10.1524/anly.1985.5.4.301. DOI: https://doi.org/10.1524/anly.1985.5.4.301
R. F ILIP ´ OW AND M. S TANISZEWSKI , On ideal equal convergence, Cent. Eur. J. Math., 12 (6) (2014), 896–910, https://doi.org/10.2478/s11533-013-0388-4. DOI: https://doi.org/10.2478/s11533-013-0388-4
S. G¨AHLER , 2-normed spaces, Math. Nachr., 28 (1964), 1–43, https://doi.org/10.1002/mana.19640280102. DOI: https://doi.org/10.1002/mana.19640280102
A. K OMISARSKI , Pointwise I-convergence and I-convergence in measure of sequences of functions, J.
Math. Anal. Appl., 340 (2) (2008), 770–779, https://doi.org/10.1016/j.jmaa.2007.09.016. DOI: https://doi.org/10.1016/j.jmaa.2007.09.016
P. K OSTYRKO , M. M Aa AJ AND T.SAL ´AT , Statistical convergence and I-convergence, Real Anal. Exchange, 25 (1) (1999),
P. K OSTYRKO , T ˇ S AL ´ AT AND W. W ILCZY ´ NSKI , I-convergence, Real Anal. Exchange, 26 (2000/2001), 669–685, https://doi.org/10.2307/44154069. DOI: https://doi.org/10.2307/44154069
B.K. L AHIRI AND P. D AS , I and I ∗ -convergence in topological spaces, Math. Bohem., 130 (2) (2005),
–160, https://doi.org/10.21136/MB.2005.134133. DOI: https://doi.org/10.21136/MB.2005.134133
N. M RO ˙ ZEK , Ideal version of Egorov’s theorem for analytic P-ideals, J. Math. Anal. Appl., 349 (2) (2009),
–458, https://doi.org/10.1016/j.jmaa.2008.08.032. DOI: https://doi.org/10.1016/j.jmaa.2008.08.032
M. M A ˇ c AJ AND M. S LEZIAK , I K -convergence, Real Anal. Exchange, 36 (1) (2010), 177–193,
https://doi.org/10.14321/realanalexch.36.1.0177. DOI: https://doi.org/10.14321/realanalexch.36.1.0177
H. S TEINHAUS , Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1) (1951), 73–74.
T. ˇ SALAT , On statistically convergent sequences of real numbers, Math. Slovaca, 30 (2) (1980), 139–150.
A. S¸ AHINER , M. G¨ URDAL , S. S ALTAN AND H. G UNAWAN , Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477–1484, https://doi.org/10.11650/twjm/1500404879. DOI: https://doi.org/10.11650/twjm/1500404879
S. S ARABADAN , S T ALEBI , Statistical convergence and ideal convergence of sequences of
functions in 2-normed spaces, Int. J. Math. Math. Sci., Art. ID 517841 (2011), 10 pp,
https://doi.org/10.1155/2011/517841. DOI: https://doi.org/10.1155/2011/517841
- The Council of Scientific and Industrial Research, HRDG, India
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Amar Kumar Banerjee, Nesar Hossain
This work is licensed under a Creative Commons Attribution 4.0 International License.