Edge induced \(V_4\)− magic labeling of graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0097Abstract
Let $V_4=\{0, a, b, c\}$ be the Klein-4-group with identity element 0 and $G=(V(G), E(G))$ be the graph with vertex set $V(G)$ and edge set $E(G)$. Let $f: E(G) \rightarrow V_4 \backslash\{0\}$ be an edge labeling and $f^{+}: V(G) \rightarrow V_4$ denote the induced vertex labeling of $f$ defined by $f^{+}(u)=\sum_{u v \in E(G)} f(u v)$ for all $u \in\left(V(G)\right.$. Then $f^{+}$again induces an edge labeling $f^{++}: E(G) \rightarrow V_4$ defined by $f^{++}(u v)=f^{+}(u)+f^{+}(v)$. Then a graph $G=(V(G), E(G))$ is said to be an edge induced $V_4$-Magic graph if $f^{++}$is constant function. The function $f$, so obtained is called an edge induced $V_4$-Magic labeling of $G$. In this paper we discuss edge induced $V_4$ magic labeling of some graphs.
Keywords:
Klein-4-group, edge induced V4-magic graphs, edge induced magic labelingMathematics Subject Classification:
MATHEMATICS- Pages: 1916-1921
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Frank Harary Graph Theory, Narosa Publishing House, 2009.
J.A. Gallian, A Dynamic Survey of Labeling, Twenty First Edition, 2018
S.M. Lee, F. Saba, E. Salehi and H. Sun, On the $V_4$-Magic Graphs, CongressusNumerantium, 156(2002), 59-67.
R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory, Springer-Verlag, New York, 2012.
K. B. Libeeshkumar and V. Anil Kumar, Induced Magic Labeling of Some Graphs, Malaya Journal of Matematik, 8(1)(2020), 59-61.
P. Sumathi and A. Rathi, Quotient Labeling of Some Ladder Graphs, American Journal of Engineering Research, $7(12)(2018), 38-42$.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.