Changes in binding number and binding degree of a graph under different edge operations

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0101

Abstract

The binding number of a graph \(G\) is defined as \(\operatorname{bind}(G)=\min \left\{\frac{N(X) \mid}{|X|}: X \subseteq V(G), X \neq \emptyset\right.\) and \(\left.N(X) \neq V(G)\right\}\). In this paper we consider the effects of contraction, deletion and/or addition of an edge on the binding number of a graph. Also, invariance of binding number is considered under these operations. A new parameter is defined here, named the binding degree. The variations of binding degree under different edge operations is also considered.

Keywords:

Contraction of edge, Deletion of edge, Addition of edge, Binding Number, Binding degree

Mathematics Subject Classification:

General Mathematics
  • Medha Itagi Huilgol Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru-560001, India.
  • S. Kiran Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru-560001, India.
  • Pages: 1934-1941
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

I. Anderson, Binding number of a graph, A survey in graph Theory, Advances in Graph Theory, 1991, 1-10.

E. Aslan, The Average Binding Number of Graphs, Science Asia, 45(2019), 85-91.

R. D. Cordero, R. C. Guerrero, Binding Number of Corona and Join of Graphs, International Mathematical Forum, 9(2014), 429-436.

F. Harary, Graph Theory, Addison Wesley/ Narosa Publishing House Reprint, 2001.

F. Harary, W. T. Tutte, A dual form of Kuratowaski's theorem, Cand. Math. Bull., 8(373)(1965), 17-20.

MedhaItagiHuilgol and S. Kiran, Domination essential edges in a graph: Edge contraction and deletion, (Communicated).

MedhaItagiHuilgol and S. Kiran, Domination nonessential edges in a graph, International Journal of Mathematical Analysis 14(2020), 241-249.

V. G. Kane, On binding number of a graph, Indian Institute of Technology, Doctoral Thesis, Kanpur, India, 1976.

M. Kwasnik and D. Michilak, The Join of Graphs and the binding minimality, Casopis Pro PestovaniMatematiky 114(1989), 262-275.

H. B. Walikar, B. B. Mulla, On graphs with binding number one, International Journal of Pure and Applied Mathematics, 98(2015), 413-418.

H. B. Walikar, B. B. Mulla, Power of a graph and binding number, International Journal of Pure and Applied Mathematics, 101(2015), 505-511.

H. B. Walikar, F. Buckley, M. K. Itagi, Diameter-essential edges in a graph, Discrete Mathematics, 259(2002), 211225.

H. B. Walikar, F. Buckley, M. K. Itagi, Radius-edgeinvariant and diameter edge-invariant graphs, Discrete Mathematics, 272(2003), 119-126.

K. Wagner, Uber eineEigenschaftebenenKomplexe, Math. Ann. 114(1937), 570-590.

${ }^{[15]}$ D. R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B, 15(1973), $225-255$.

G. Xu, X. Li, S. Zhang, The binding number of a digraph, CJCDGCGT, 4381(2007), 221-227.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

Medha Itagi Huilgol, and S. Kiran. “Changes in Binding Number and Binding Degree of a Graph under Different Edge Operations”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 1934-41, doi:10.26637/MJM0804/0101.