Changes in binding number and binding degree of a graph under different edge operations
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0101Abstract
The binding number of a graph \(G\) is defined as \(\operatorname{bind}(G)=\min \left\{\frac{N(X) \mid}{|X|}: X \subseteq V(G), X \neq \emptyset\right.\) and \(\left.N(X) \neq V(G)\right\}\). In this paper we consider the effects of contraction, deletion and/or addition of an edge on the binding number of a graph. Also, invariance of binding number is considered under these operations. A new parameter is defined here, named the binding degree. The variations of binding degree under different edge operations is also considered.
Keywords:
Contraction of edge, Deletion of edge, Addition of edge, Binding Number, Binding degreeMathematics Subject Classification:
General Mathematics- Pages: 1934-1941
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
I. Anderson, Binding number of a graph, A survey in graph Theory, Advances in Graph Theory, 1991, 1-10.
E. Aslan, The Average Binding Number of Graphs, Science Asia, 45(2019), 85-91.
R. D. Cordero, R. C. Guerrero, Binding Number of Corona and Join of Graphs, International Mathematical Forum, 9(2014), 429-436.
F. Harary, Graph Theory, Addison Wesley/ Narosa Publishing House Reprint, 2001.
F. Harary, W. T. Tutte, A dual form of Kuratowaski's theorem, Cand. Math. Bull., 8(373)(1965), 17-20.
MedhaItagiHuilgol and S. Kiran, Domination essential edges in a graph: Edge contraction and deletion, (Communicated).
MedhaItagiHuilgol and S. Kiran, Domination nonessential edges in a graph, International Journal of Mathematical Analysis 14(2020), 241-249.
V. G. Kane, On binding number of a graph, Indian Institute of Technology, Doctoral Thesis, Kanpur, India, 1976.
M. Kwasnik and D. Michilak, The Join of Graphs and the binding minimality, Casopis Pro PestovaniMatematiky 114(1989), 262-275.
H. B. Walikar, B. B. Mulla, On graphs with binding number one, International Journal of Pure and Applied Mathematics, 98(2015), 413-418.
H. B. Walikar, B. B. Mulla, Power of a graph and binding number, International Journal of Pure and Applied Mathematics, 101(2015), 505-511.
H. B. Walikar, F. Buckley, M. K. Itagi, Diameter-essential edges in a graph, Discrete Mathematics, 259(2002), 211225.
H. B. Walikar, F. Buckley, M. K. Itagi, Radius-edgeinvariant and diameter edge-invariant graphs, Discrete Mathematics, 272(2003), 119-126.
K. Wagner, Uber eineEigenschaftebenenKomplexe, Math. Ann. 114(1937), 570-590.
${ }^{[15]}$ D. R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B, 15(1973), $225-255$.
G. Xu, X. Li, S. Zhang, The binding number of a digraph, CJCDGCGT, 4381(2007), 221-227.
- NA
Similar Articles
- A. Rosa Mystica, M. Mary Mejrullo Merlin, An approach for multi criteria decision making with intuitionistic fuzzy set by integrating H-max distance measure, CODAS method and PROMETHEE techniques , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.