Fundamental form IV and curvature formulas of the hypersphere

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0116

Abstract

We study curvature formulas and the fourth fundamental form IV of hypersurfaces in the four dimensional Euclidean geometry E4. We calculate fourth fundamental form and curvatures for hypersurfaces, and also for hypersphere. Moreover, we give some relations of fundamentals forms, and curvatures of hypersphere.

Keywords:

Euclidean spaces, four space, hypersurface, hypersphere, curvature, fourth fundamental form.

Mathematics Subject Classification:

Mathematics
  • Pages: 2008-2011
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Alias, L.J., Gürbüz, N.: An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata 121, 113-127 (2006).

Arslan, K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C., Öztürk, G.: Vranceanu surface in $mathbb{E}^4$ with pointwise 1-type Gauss map. Indian J. Pure Appl. Math. 42(1), 41-51 (2011).

Arslan, K., Milousheva, V.: Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20(2) 311-332 (2016).

Arvanitoyeorgos, A., Kaimakamis, G., Magid, M.: Lorentz hypersurfaces in $mathbb{E}_1^4$ satisfying $Delta H=alpha H$. Illinois J. Math. 53(2), 581-590 (2009).

Barros, M., Chen, B.Y.: Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan 39(4), 627-648 (1987).

Barros, M., Garay, O.J.: 2-type surfaces in $S^3$. Geom. Dedicata 24(3), 329-336 (1987).

Bektaş, B.; Canfes, E.Ö; Dursun, U.: Classification of surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map. Math. Nachr. 290(16), 2512-2523 (2017).

Chen, B. Y.: On submanifolds of finite type. Soochow J. Math. 9, 65-81 (1983).

Chen, B.Y.: Total mean curvature and submanifolds of finite type. World Scientific, Singapore (1984).

Chen, B.Y.: Finite type submanifolds and generalizations. University of Rome, 1985.

Chen, B.Y.: Finite type submanifolds in pseudoEuclidean spaces and applications. Kodai Math. J. 8(3), 358-374 (1985).

Chen, B.Y., Piccinni, P.: Submanifolds with finite type Gauss map. Bull. Austral. Math. Soc. 35, 161-186 (1987).

Cheng, Q.M., Wan, Q.R.: Complete hypersurfaces of $mathbb{R}^4$ with constant mean curvature. Monatsh. Math. 118, 171-204 (1994).

Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195-204 (1977).

Choi, M., Kim, Y.H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38 , 753-761 (2001).

Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13, 10-21 (1990).

Do Carmo, M., Dajczer, M.: Rotation Hypersurfaces in Spaces of Constant Curvature. Trans. Amer. Math. Soc. 277, 685-709 (1983).

Dursun, U.: Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11(5), 1407-1416 (2007).

Dursun, U., Turgay, N.C.: Space-like surfaces in Minkowski space $mathbb{E}_1^4$ with pointwise 1-type Gauss map. Ukrainian Math. J. 71(1), 64-80 (2019).

Ferrandez, A., Garay, O.J., Lucas, P.: On a certain class of conformally at Euclidean hypersurfaces. In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany 48-54 (1990).

Ganchev, G., Milousheva, V.: General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38, 883-895 (2014).

Garay, O.J.: On a certain class of finite type surfaces of revolution. Kodai Math. J. 11, 25-31 (1988).

Garay, O.: An extension of Takahashi's theorem. Geom. Dedicata 34, 105-112 (1990).

Güler, E., Hacisalihoğlu, H.H., Kim, Y.H.: The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10(9), 1-12 (2018).

Güler, E., Magid, M., Yaylı, Y.: Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symm. Phys. 41, 77-95 (2016).

Güler, E., Turgay, N.C.: Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16(3), 1-16 (2019).

Hasanis, Th., Vlachos, Th.: Hypersurfaces in $mathbb{E}^4$ with harmonic mean curvature vector field. Math. Nachr. 172, 145-169 (1995).

Kim, D.S., Kim, J.R., Kim, Y.H.: Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39(4), 1319-1327 (2016).

Kim, Y.H., Turgay, N.C.: Surfaces in $mathbb{E}^4$ with $L_1$ pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50(3), 935-949 (2013).

Kühnel, W.: Differential geometry. Curves-surfacesmanifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.

Levi-Civita, T.: Famiglie di superficieisoparametrichenellordinariospacioeuclideo. Rend. Acad. Lincei 26, 355-362 (1937).

Moore, C.: Surfaces of rotation in a space of four dimensions. Ann. Math. 21, 81-93 (1919).

Moore, C.: Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26, 454-460 (1920).

Senoussi, B., Bekkar, M.: Helicoidal surfaces with $Delta^J r=$ $A r$ in 3-dimensional Euclidean space. Stud. Univ. BabeşBolyai Math. 60(3), 437-448 (2015).

Stamatakis, S., Zoubi, H.: Surfaces of revolution satisfying $Delta^{I I I} x=A x$. J. Geom. Graph. 14(2), 181-186 (2010).

Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380-385 (1966).

Turgay, N.C.: Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. J. Aust. Math. Soc. 99(3), 415-427 (2015).

  • NA

Metrics

PDF views
43
Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-10-2020

How to Cite

Erhan GÜLER. “Fundamental Form IV and Curvature Formulas of the Hypersphere”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2008-11, doi:10.26637/MJM0804/0116.