Some coupled fixed point results for rational type contraction mappings in \(S\)-metric spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0117Abstract
We prove the existence of some coupled fixed point for rational type contraction mappings in \(S\)- metric space. Our results generalized, extend and enrich recently fixed point results in the literature. From the previous obtained results, we deduce some coincidence point results for mappings satisfying a contraction of an integral type as an application.
Keywords:
S-metric space, point of coincidence, continuous, Fixed pointMathematics Subject Classification:
Mathematics- Pages: 2012-2020
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
M. Abbas, B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262-269.
Abbas, A. R. Khan, T. Nazir, Coupled common fixed point results in two generalizes metric spaces, Appl. Math. Comput. 217 (2011), 6328-6336.
M. Bousselsal and Z. Mostefaoui, ( $psi, alpha, beta)$-weak contraction in partially ordered $G$-metric spaces, Thai J. Math., 12(1) (2014), 71-80.
M. Bousselsal and M. L. Kadri, Coupled coincidence point for Generalized Monotone operators in Partially Ordered Metric Spaces, Thai J. Math., 15(2) (2017), 367385.
M. Bousselsal and M. Jazmati, Fixed points for four maps related to generalized weakly contractive condition in partial metric spaces, Int. J. Appl. Math Research, 4(1) (2015), 205-216.
M. Bousselsal and S. Hamidou Jah, Property (P) and some fixed point results on a new $varphi$-weakly contractive mappings, Adv. Fixed Point Theory, 4(2) (2014), 169183.
M. Bousselsal, G. Benhamida, Some topological results and a fixed point theorem in $A$-metric spaces, Accepted in Malaya Journal of Matematik, 2020.
B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329336.
N. V. Dung, On coupled common fixed points for mixed weakly monotone mappings in partially ordered $S$-metric spaces, Fixed Point Theory Appl., Article id 48 (2013).
S. Gahler, 2-Metrische Raume and ihreTopologischeStruktur, Math. Nachr., 26 (1963), 115-148.
S. Gahler, Zur Geometric 2-Metrische Raume, Rev. Raumaine Math. Pures Appl., 11 (1966), 665-667.
Lj. Gajić, Z. I. Crvenković, On mappings with contractive iterate at a point in generalized metric spaces, Fixed Point Theory Appl., 2010, Article ID 458086, 16 pages.
M. E. Gordji, E. Akbartabar, Y. J. Cho, M. Remezani, Coupled common fixed point theorems for mixed weakly monotonemappings in partially ordered metric spaces, Fixed Point Theory Appl., Vol. 95, 2012.
V. Gupta and R. Deep, Some coupled fixed point theorems in partially ordered S-metric spaces, Miskolc Math. Notes, 16(1)(2015), 181-194.
V. Lakshmikantham, Lj. Ćirić, Coupled common fixed point theorems for nonlinear contractions inpartially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341 4349.
Z. Al Mohiameed, M. Bousselsal and Z. Mostefaoui, Some Coupled Fixed Point Results in Dislocated Quasib-metric spaces for rational type contraction mappings, Asian J. Math. Physic, 2(1) (2018), 1-5.
V. D. Nguyen, T. H. Nguyen, S. Radojević, Fixed Point Theorems for $g-$ Monotone Maps pn Partially Ordered S-Metric Spaces, Filomat, 28(9) (2014), 1885-1898.
S. Radenović, T. Došenović, S. Sedghi, Coupled Coincidence Point Theorems in $S$-metric spaces using Integral Type of Contraction, submitted.
S. Radenović, Z. Kadelburg, D. Jandrlić, A. Jandrlić, Some results on weak contractive maps, Bull. Iranian Math. Soc., 38 (3) (2012), 625-645.
S. Sedghi, N. Shobe, T. Došenović, Fixed point results in $S$-metric spaces, Nonlinear Functional Anal. Appl., 20 (1)(2015), 55-67.
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in $S$-metric spaces, Math. Vesnik, 64(2012), 258-266.
S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in $D^*$-metric spaces, Fixed Point Theory Appl. 2007, Article ID 27906 Vol. 2007, 1-13.
S. Sedghi, M. M. Rezaee, T. Došenović, S. Radenović, Common Fixed point theorems for contractive mappings satisfying $Phi$-maps in $S$-metric spaces, Acta Univ. Sapienta Math., 8(2) (2016), 298-311.
- NA
Similar Articles
- Erhan GÜLER, Fundamental form IV and curvature formulas of the hypersphere , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.