Construction of Gabor frames in \(l^2(\mathbb{Z})\) using Gabor frames in \(L^2(\mathbb{R})\)
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0120Abstract
In this paper we identified a collection of unitary operators which maps Gabor frames in \(L^2(\mathbb{R})\) to Gabor frames in \(l^2(\mathbb{Z})\). This is very important in construction of Gabor frames in \(l^2(\mathbb{Z})\) from Gabor frames in \(L^2(\mathbb{R})\) other than which obtained from Gabor frames in \(L^2(\mathbb{R})\) through sampling.
Keywords:
Weyl-Heisenberg frame, Weyl-Heisenberg frameorthonormal basis, unitary operator, window coefficient sequenceMathematics Subject Classification:
Mathematics- Pages: 2029-2034
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Z. Amiri, M. A. Dehghan, E. Rahimib and L. Soltania, Bessel subfusion sequences and subfusion frames, Iran. J. Math. Sci. Inform., 8(1), (2013), 31-38.
P. G. Cazassa and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I., (2004), 87-113.
O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhäuser, 2016.
O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17, (2004), 48-68.
I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions , J. Math. Phusics, 27 (1986) 1271-1283.
R. J. Duffin and A. C.Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. , 72 (1952) 341366.
T.C. Easwaran Nambudiri, K. Parthasarathy, Characterisation of Weyl-Heisenberg frame operators, Bull. Sci. Math., 137(2013) 322-324.
D. Gabor, Theory of communication, J. IEEE, 93(1946), 429-457.
K. Gröchenig, Foundations of Time Frequency Analysis, Birkhäuser, 2001.
$mathrm{S}$. Li and H. Ogawa,Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10, (2004), 409-431.
A. J. E. M.Janssen, From continuous to discrete WeylHeisenberg frames through sampling, J. Four. Anal. Appl., $3(5)(1971), 583-596$.
- NA
Similar Articles
- N. Anuradha, \(r_c\)-operator on topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.