Construction of Gabor frames in \(l^2(\mathbb{Z})\) using Gabor frames in \(L^2(\mathbb{R})\)

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0120

Abstract

In this paper we identified a collection of unitary operators which maps Gabor frames in \(L^2(\mathbb{R})\) to Gabor frames in \(l^2(\mathbb{Z})\). This is very important in construction of Gabor frames in \(l^2(\mathbb{Z})\) from Gabor frames in \(L^2(\mathbb{R})\) other than which obtained from Gabor frames in \(L^2(\mathbb{R})\) through sampling.

Keywords:

Weyl-Heisenberg frame, Weyl-Heisenberg frameorthonormal basis, unitary operator, window coefficient sequence

Mathematics Subject Classification:

Mathematics
  • Jineesh Thomas Research Department of Mathematics, St. Thomas College Palai, Kottayam, Kerala, India.
  • N.M. Madhavan Namboothiri Department of Mathematics, Government College Kottayam, Nattakom P O, Kerala, India.
  • Eldo Varghese Research Department of Mathematics, St. Thomas College Palai, Kottayam, Kerala, India.
  • Pages: 2029-2034
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Z. Amiri, M. A. Dehghan, E. Rahimib and L. Soltania, Bessel subfusion sequences and subfusion frames, Iran. J. Math. Sci. Inform., 8(1), (2013), 31-38.

P. G. Cazassa and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I., (2004), 87-113.

O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhäuser, 2016.

O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17, (2004), 48-68.

I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions , J. Math. Phusics, 27 (1986) 1271-1283.

R. J. Duffin and A. C.Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. , 72 (1952) 341366.

T.C. Easwaran Nambudiri, K. Parthasarathy, Characterisation of Weyl-Heisenberg frame operators, Bull. Sci. Math., 137(2013) 322-324.

D. Gabor, Theory of communication, J. IEEE, 93(1946), 429-457.

K. Gröchenig, Foundations of Time Frequency Analysis, Birkhäuser, 2001.

$mathrm{S}$. Li and H. Ogawa,Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10, (2004), 409-431.

A. J. E. M.Janssen, From continuous to discrete WeylHeisenberg frames through sampling, J. Four. Anal. Appl., $3(5)(1971), 583-596$.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

Jineesh Thomas, N.M. Madhavan Namboothiri, and Eldo Varghese. “Construction of Gabor Frames in \(l^2(\mathbb{Z})\) Using Gabor Frames in \(L^2(\mathbb{R})\)”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2029-34, doi:10.26637/MJM0804/0120.