Construction of Gabor frames in l2(Z) using Gabor frames in L2(R)

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0120

Abstract

In this paper we identified a collection of unitary operators which maps Gabor frames in L2(R) to Gabor frames in l2(Z). This is very important in construction of Gabor frames in l2(Z) from Gabor frames in L2(R) other than which obtained from Gabor frames in L2(R) through sampling.

Keywords:

Weyl-Heisenberg frame, Weyl-Heisenberg frameorthonormal basis, unitary operator, window coefficient sequence

Mathematics Subject Classification:

Mathematics
  • Jineesh Thomas Research Department of Mathematics, St. Thomas College Palai, Kottayam, Kerala, India.
  • N.M. Madhavan Namboothiri Department of Mathematics, Government College Kottayam, Nattakom P O, Kerala, India.
  • Eldo Varghese Research Department of Mathematics, St. Thomas College Palai, Kottayam, Kerala, India.
  • Pages: 2029-2034
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Z. Amiri, M. A. Dehghan, E. Rahimib and L. Soltania, Bessel subfusion sequences and subfusion frames, Iran. J. Math. Sci. Inform., 8(1), (2013), 31-38.

P. G. Cazassa and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I., (2004), 87-113.

O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhäuser, 2016.

O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17, (2004), 48-68.

I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions , J. Math. Phusics, 27 (1986) 1271-1283.

R. J. Duffin and A. C.Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. , 72 (1952) 341366.

T.C. Easwaran Nambudiri, K. Parthasarathy, Characterisation of Weyl-Heisenberg frame operators, Bull. Sci. Math., 137(2013) 322-324.

D. Gabor, Theory of communication, J. IEEE, 93(1946), 429-457.

K. Gröchenig, Foundations of Time Frequency Analysis, Birkhäuser, 2001.

$mathrm{S}$. Li and H. Ogawa,Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10, (2004), 409-431.

A. J. E. M.Janssen, From continuous to discrete WeylHeisenberg frames through sampling, J. Four. Anal. Appl., $3(5)(1971), 583-596$.

  • NA

Metrics

PDF views
33
Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20265.0
|

Published

01-10-2020

How to Cite

Jineesh Thomas, N.M. Madhavan Namboothiri, and Eldo Varghese. “Construction of Gabor Frames in l2(Z) Using Gabor Frames in L2(R)”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2029-34, doi:10.26637/MJM0804/0120.