A new fixed point result in bipolar controlled fuzzy metric spaces with application
Downloads
DOI:
https://doi.org/10.26637/mjm1003/005Abstract
In this paper, we introduce the notion of bipolar controlled fuzzy metric spaces which is an extension of the result of Sezen [20]. The paper concerns our sustained efforts for the materialization of controlled fuzzy metric spaces.
Further, we establish a Banach-type fixed point theorem. We provide suitable examples with graphics which validate our result. We also employ an application to substantiate the utility of our established result to find the unique solution of an integral equation arising in automobile suspension system.
Keywords:
Fixed point, Control function, Controlled fuzzy metric spaces, Bipolar controlled fuzzy metric spacesMathematics Subject Classification:
54H25, 47H10- Pages: 224-236
- Date Published: 01-07-2022
- Vol. 10 No. 03 (2022): Malaya Journal of Matematik (MJM)
T. Abdeljawad, K. Abodayeh and N. Mlaiki, On fixed point generalizations to partial b-metric spaces, $J$. Comput. Anal. Appl., 19(2015), 883-891.
T. Abdeljawad, N. Mlaiki, H. Aydi and N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics Molecular Diversity Preservation International, 6(2018), 1-10. DOI:10.3390/math6100194.
H. Afshari, M. Atapour And H. Aydi, A common fixed point for weak $phi$ - contractions on b-metric spaces, Fixed Point Theory, 13(2012), 337-346.
H. Afshari, M.Atapour And H. Aydi, Generalized $alpha-psi$-Geraghty multivalued mappings on b-metric spaces endowed with a graph, J. Appl. Eng. Math., 7 (2017), 248-260.
H. Afshari, M. Atapour and H. Aydi, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discret. Dyn. Nat. Soc., (2018), 4745764.
N. Alharbi, H. Aydi, A. Felhi, C. Ozel and S. Sahmim, $alpha$-Contractive mappings on rectangular b-metric spaces and an application to integral equations, J. Math. Anal., 9 (2018), 47-60.
I.A. BAKhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30(1989), 26- -37.
S. BANACH , Sur les opérations dans les ensembles abstraits et leur application aux équations intégrals, Fundam. Math., 3 (1922), 133-181.
Ayush Bartwal, R. C. Dimri, Gopi Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, Journal of Nonlinear Sciences and Applications , 13 (2020), 196-204.
M. Boriceanu, A. Petrusel and I. A. Rus, Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Int. J. Math. Statistics, 6 (2010), 65-76.
S. CzerwiK , Contraction mappings in b-metric spaces, Acta Math. Inform. univ. Ostra., 1 (1993), 5-11. URL: http : //dml.cz/dmlcz/120469.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
HaO Yan and GuAn Hongyan, On some common fixed point results for weakly contraction mappings with application, Journal of Function Spaces, 2021(2021), 5573983, 1-14.
J. K. Kim, Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces, $J$. Computational Anal. Appl., 22 (2017), 336-345.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 326334 .
F. Mehmood, R. Ali, C. Ionescu and T. Kamran, Extended fuzzy b-metric spaces, J. Math. Anal., 8 (2017), 124-131.
N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics Molecular Diversity Preservation International, 6(2018),1-7. DOI:10.3390/math6100194.
S. NĂdĂBan , Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273-281. DOI: 10.15837/ijccc.2016.2.2443.
Müzeyyen Sangurlu Sezen Controlled fuzzy metric spaces and some related fixed point results, Numerical Partial Differential Equations, 2020, 1-11.
B. Schweizer and A. Sklar, Statistical metric spaces, Paciffc J. Math., 10(1960), 313-334.
L.A. ZADEH, Fuzzy sets, Inform and Control, 8(1965), 338-353.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rakesh Tiwari, Shraddha Rajput
This work is licensed under a Creative Commons Attribution 4.0 International License.