On \(\mathscr{P}\)-energy of join of graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0128

Abstract

Given a graph \(G=(V, E)\) with a vertex partition \(\mathscr{P}\) of cardinality \(k\), we associate to it a real matrix \(A_{\mathscr{P}}(G)\), whose diagonal entries are the cardinalities of elements in \(\mathscr{P}\) and off-diagonal entries are from the set \(\{2,1,0,-1\}\). The \(\mathscr{P}\)-energy \(E_{\mathscr{P}}(G)\) is the sum of the absolute values of eigenvalues of \(A \mathscr{P}(G)\). In this paper, we discuss \(\mathscr{P}\)-energy of the join of graphs using the concept of \(M\)-coronal of graphs and determine \(\mathscr{P}\)-energy for the complements of the join of graphs.

Keywords:

Graph energy, partition energy, coronal of a graph, \(\mathscr{P}\)-energy

Mathematics Subject Classification:

Mathematics
  • Prajakta Bharat Joshi Department of Mathematics, CHRIST(Deemed to be University), Bengaluru-560029, India.
  • Mayamma Joseph Department of Mathematics, CHRIST(Deemed to be University), Bengaluru-560029, India.
  • Pages: 2082-2087
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

C. Adiga, E. Sampathkumar, M. A. Sriraj and A. S Shrikanth, Color energy of a graph, Proc. Jangjeon Math Soc. 16(3) (2013), 335-351.

S. Y. Cui and G. X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437(7) (2012), 1692-1703.

D. M. Cvetković , M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.

I. Gutman, The energy of a graph, Ber. Math. Stat. SektForschungsz. Graz. 103 (1978), 1-22.

I. Gutman and B. Furtula, The total $pi$-electron energy saga, Croat. Chem. Acta. 90(3) (2017), 359-368, DOI 10.5562/cca3189

I. Gutman, X. Li, J. Zhang, Graph Energy, Springer, New York, 2012.

R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, CRC press, 2011.

${ }^{[8]}$ P. B. Joshi and M. Joseph, $mathscr{P}$-energy of graphs, Acta Univ. Sapientiae, Info. 12(1) (2020), 137-157.

X. Liu, and Z. Zhang, Spectra of subdivision-vertex join and subdivision-edge join of two graphs, Bull. Malaysian Math. Sci. Soc. 42(1) (2019), 15-31.

C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl., 435(5) (2011), 998-1007.

E. Sampathkumar and L. Pushpalatha, Complement of a graph: A generalization, Graphs Comb., 14(4) (1998), 377-392.

E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and P. Bhat, Generalized complements of a graph, Indian J. Pure Appl. Math., 29(6) (1998), 625-639.

E. Sampathkumar, S. V. Roopa, K. A. Vidya, M. A. Sriraj, Partition energy of a graph, Proc. Jangjeon Math. Soc. 18(4) (2015), 473-493.

E. Sampathkumar and M. A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, $J$. Comb. Inf. Syst. Sci. 38 (2013), 113-120.

D. B. West, Introduction to Graph Theory, Pearson, New Jersey, 2001.

F. Zhang (Ed.), The Schur Complement and its Applications, Springer Science & Business Media, 2006.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

Prajakta Bharat Joshi, and Mayamma Joseph. “On \(\mathscr{P}\)-Energy of Join of Graphs”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2082-7, doi:10.26637/MJM0804/0128.