Characteristic polynomials of some algebraic graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0142

Abstract

The zero divisor graph \(\Gamma(R)\) of a commutative ring \(R\) is a graph whose vertices are non-zero zero divisors of \(R\) and two vertices are adjacent if their product is zero. The characteristic polynomial of matrix \(M\) is defined as \(|\lambda I-M|\) and roots of the characteristic polynomial are known as eigenvalues of \(M\). We investigate eigenvalues and characteristic polynomials for some zero divisor graphs.

Keywords:

Zero-divisor Graph, Adjacency Matrix, Characteristic Polynomial, Energy, Eigenvalue

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
  • M. R. Jadeja Atmiya University, Rajkot-360005, Gujarat, India.
  • Pages: 2165-2168
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Mohammad Reza Ahmadi and Reza Jahani-Nezhad, Energy and Wiener Index of Zero-Divisor Graphs, Iranian Journal of Mathematical Chemistry, 2(1)(2011), 45-51.

S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274(2004), $847-855$.

D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.

I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.

I. Gutman, The Energy of a Graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz., (1978), 1-22.

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991).

T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra, 301(2006), 174-193.

S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307(2007), 1155-1166.

B. Surendranath Reddy, Rupali.S. Jain and N. Laxmikanth, Eigenvalues and Wiener index of the Zero Divisor graph $Gammaleft[mathbb{Z}_nright]$, eprint arXiv:1707.05083, (2017).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

S. K. Vaidya, and M. R. Jadeja. “Characteristic Polynomials of Some Algebraic Graphs”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2165-8, doi:10.26637/MJM0804/0142.