Characteristic polynomials of some algebraic graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0142Abstract
The zero divisor graph \(\Gamma(R)\) of a commutative ring \(R\) is a graph whose vertices are non-zero zero divisors of \(R\) and two vertices are adjacent if their product is zero. The characteristic polynomial of matrix \(M\) is defined as \(|\lambda I-M|\) and roots of the characteristic polynomial are known as eigenvalues of \(M\). We investigate eigenvalues and characteristic polynomials for some zero divisor graphs.
Keywords:
Zero-divisor Graph, Adjacency Matrix, Characteristic Polynomial, Energy, EigenvalueMathematics Subject Classification:
Mathematics- Pages: 2165-2168
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Mohammad Reza Ahmadi and Reza Jahani-Nezhad, Energy and Wiener Index of Zero-Divisor Graphs, Iranian Journal of Mathematical Chemistry, 2(1)(2011), 45-51.
S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274(2004), $847-855$.
D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.
I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
I. Gutman, The Energy of a Graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz., (1978), 1-22.
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1991).
T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra, 301(2006), 174-193.
S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307(2007), 1155-1166.
B. Surendranath Reddy, Rupali.S. Jain and N. Laxmikanth, Eigenvalues and Wiener index of the Zero Divisor graph $Gammaleft[mathbb{Z}_nright]$, eprint arXiv:1707.05083, (2017).
- NA
Similar Articles
- S. Sankaranarayanan, An approach to statistical analysis-using the average transmission model of Covid 19 , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.