A new analytical method to solve Klein-Gordon equations by using homotopy perturbation Mohand transform method

Downloads

DOI:

https://doi.org/10.26637/mjm1001/001

Abstract

In this paper, we will study about Fractional-order partial differential equations in Mathematical Science and we will introduce and analyse fractional calculus with an integral operator that contains the Caputo- Fabrizio’s fractional-order derivative. The advanced method is an appropriate union of the new integral transform named as ‘Mohand transform’ and the homotopy perturbation method. Some numerical examples are used to communicate the generality and clarity of the proposed method.We will also find the analytical solution of the linear and non-linear Klein –Gordan equation which originate in quantum field theory. The homotopy perturbation Mohand transform method (HPMTM) is a merged form of Mohand transform, homotopy perturbation method, and He’s polynomials. Some numerical examples are used to indicate the generality and clarity of the proposed method.

Keywords:

Mohand Transform, Homotopy Perturbation Method (HPM), Fractional Calculus

Mathematics Subject Classification:

26A33
  • Pages: 1-19
  • Date Published: 01-01-2022
  • Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)

A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006.

K.S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1993.

K. Nishimoto, Fractional Calculus, Vol. 1, Vol. 2 and Vol. 3, Descartes Press, Koriyama, Japan, (1984), (1987), (1989).

K.B. Oldham, and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York; and Dover Publications, New York, 1974.

I. Podlubny, Fractional Differential Equation, Vol. 198, Academic Press, California, 1999.

B. Ross, Fractional Calculus and Its Applications, (Proc. Internat. Conf., New Heaven, 1974), Lecture Notes in Math. Vol. 457, Springer Verlag, New York, 1978.

S.G. Samko, A.A. Kilbas, And O.I. Marichev, Fractional Integrals and Derivatives:Theory and Applications, Gordon and Breach, Amsterdam, 1993.

L. Debnath and R. P. Feynman, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 54(2003), 3413-3442.

A. Prakash, Analytical method for space-fractional telegraph equation by homotopy perturbation transform method, Nonlinear Eng., 5(2)(2016), 123-128.

M. Safari, D. D. Gandi, And M. Moslemi, Application of he's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers Kuramoto equation, Comput. Math. Appl., 58(1112)(2009), 2091-2097.

J. Singh, D. Kumar, D. Baleanu, and S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335(2018), 12-24.

Y. Chen, I. Petras, and D. Xue, Fractional-order control-A tutorial, Proc. Amer. Control Conf., 2009, $1397-1411$.

J. D. Singh Kumar and D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Difference Equ., 231(2018).

J. Singh, D. Kumar, And A. Kiliçman, Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstr. Appl. Anal., 2014, Art. no. 535793.

K. Hosseini, Y. J. Xu, P. Mayeli, A. Bekir, P. Yao, Q. Zhou, And O. Guner, A study on the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optoelectron. Adv. Mater.Rapid Commun., 11(7-8)(2017), 423-429.

B. BatiHa, M. S. M. Noorani, I. HaShim, And K. BatiHa, Numerical simulations of systems of PDEs by variational iteration method, Phys. Lett. A, 372(6)(2008), 822-829.

A. M. WAZwAZ, The variational iteration method for solving linear and non-linear systems of PDEs, Comput. Math. Appl., 54(7-8)(2007), 895-902.

H. Khan, R. Shah, D. Baleanu, and M. Arif, An efficient analytical technique, for the solution of fractional-order telegraph equations, Mathematics, 7(5)(2019), 426-436.

R. Shah, H. Khan, P. Kumam, M. ArIF, and D. Baleanu, Natural transform de-composition method for solving fractional-order partial differential equations with proportional delay, Mathematics, 7(6)(2019), $532-540$.

A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Leiden, The Netherlands: Balkema Publishers, 2002.

M. A. Abdou, Approximate solutions of a system of PDEEs arising in physics, Int. J. Nonlinear Sci., 12(3)(2011), 305-312.

O. ÖzKan And A. Kurt, On conformable double Laplace transform, Opt.Quantum Electron., 50(2)(2018), $103-110$.

Y. Çenesiz, D. Baleanu, A. Kurt, and O. Tasbozan, New exact solutions of Burgers' type equations with conformable derivative, Waves Random Complex Media, 27(1)(2017), 103-116.

G. C. WU AND D. Baleanu, Variational iteration method for fractional calculus-a universal approach by Laplace transform, Adv. Difference Equ., 18(2013).

O. ÖzKan, Approximate analytical solutions of systems of fractional partial differential equations, Karaelmas Sci. Eng. J., 7(1)(2017), 63-67.

R. Shah, H. Khan, P. Kumam, and M. Arif, An analytical technique to solve the system of nonlinear fractional partial differential equations, Mathematics, 7(6)(2019), 505-515.

P. S. Kumar, P. Gomathi, S. Gowri, and A. Viswanathan, Applications of Mohand transform to mechanics and electrical circuit problems, Int. J.Res. Advent Technol., 6(10)(2018), 2838-2840.

S. AgGarwal and R. Chauhan, A comparative study ofMohand and Aboodh transform, Int. J. Res. Advent Technol, 7(1)(2019), 520-529.

S. Aggarwal and R. Chaudhary, A comparative study of Mohand and Laplace transform, J. Emerg. Technol. Innov. Res., 6(2)(2019), 230-240.

S. Aggarwal and S. D. Sharma, A comparative study of Mohand and Sumudu transform, J. Emerg. Technol. Innov. Res., 6(3)(2019), 145-153.

S. Aggarwal, R. Chauhan, and N. Sharma, Mohand transform of Bessel's functions, Int. J. Res. Advent Technol., 6(11)(2018), 3034-3038.

S. Aggarwal, N. Sharma, and R. Chauhan, Solution of linear Volterra integral equations of a second kind using Mohand transform, Int. J. Res.Advent Technol., 6(11)(2018), 3098-3102.

S. Aggarwal, S. D. Sharma, and A. R. Gupta, A new application of Mohand transform for handling Abel's integral equation, J. Emerg. Technol. Innov. Res., 6(3)(2019), 600-608.

M. Mohand and A. Mahgoub, The new integral transform 'Mohand' transform, Adv. Theor. Appl. Math., 12(2)(2017), 113-120.

S. Aggarwal, R. Mishra, and A. Chaudhary, A comparative study ofMohand and Elzaki transform, Global J. Eng. Sci. Researches, 6(2)(2019), 203-213.

K. Kothari, U. Mehta, and J. Vanualailai, A novel approach of fractional order time-delay system modeling based on Haar wavelet, ISA Trans., 80(2018), 371-380.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2022

How to Cite

Ravi Shankar Dubey, Pranay Goswami, Tailor Gomati A, and Vinod Gill. “A New Analytical Method to Solve Klein-Gordon Equations by Using Homotopy Perturbation Mohand Transform Method”. Malaya Journal of Matematik, vol. 10, no. 01, Jan. 2022, pp. 1-19, doi:10.26637/mjm1001/001.