On fractional Volterra-Fredholm integro-differential systems with non-dense domain and non-instantaneous impulses
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0154Abstract
The key purpose of this manuscript is to examine the existence and uniqueness of integral solutions for a class of fractional Volterra-Fredholm integro-differential systems with non-instantaneous impulses and non-densely defined linear operators in Banach spaces. We are constructing the main findings on the basis of the Banach contraction theory. An example is given to support the validation of the theoretical results achieved.
Keywords:
Fractional differential equations, Integral solution, non-instantaneous impulses, fixed point theoremMathematics Subject Classification:
Mathematics- Pages: 2228-2232
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
J. Bora and S.N. Bora, Sufficient conditions for existence of integral solution for non-instantaneous impulsive fractional evolution equations, Indian J. Pure Appl. Math., 51(3)(2020), 1065-1082.
X. Fu, X. Liu and B. Lu, On a new class of impulsive fractional evolution equations, Advances in Difference Equations, ( 2015) 2015:227.
E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc.Amer. Math. Soc., 141 (2013), 1641-1649.
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam, 2006.
M. Mallika Arjunan, Existence results for nonlocal fractional mixed type integro-differential equations with noninstantaneous impulses in Banach space, Malaya Journal of Matematik, 7(4)(2019), 837-840.
Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., Real World Appl. 11(2010), 4465-4475.
Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59(2010), 1063-1077.
- NA
Similar Articles
- M. Mallika Arjunan, Mild solution for fractional integro-differential equations with non-instantaneous impulses through sectorial operator in Banach space , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Mild solution for fractional mixed type integro-differential equations with non-instantaneous impulses through sectorial operator , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Existence of solutions of nonlocal fractional mixed type integro-differential equations with non-instantaneous impulses in Banach space , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Existence and uniqueness of fractional mixed type integro-differential equations with non-instantaneous impulses through sectorial operator , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Integral solutions of fractional order mixed type integro-differential equations with non-instantaneous impulses in Banach space , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Integral solutions of fractional neutral mixed type integro-differential systems with non-instantaneous impulses in Banach space , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, Existence results for nonlocal fractional mixed type integro-differential equations with non-instantaneous impulses in Banach space , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
- M. Mallika Arjunan, On fractional neutral Volterra-Fredholm integro-differential systems with non-instantaneous impulses in Banach space , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.