Householder's method for solving the \(p\)-adic polynomial equations
Downloads
DOI:
https://doi.org/10.26637/mjm1001/003Abstract
This work offers an analogue of Householder's Method for solving a root-finding problem \(f(x)=0\) in the \(p\)-adic setting. We apply this method to calculate the square roots of a \(p\)-adic number \(a\in\mathbb{Q}_{p}\) where \(p\) is a prime number, and through the calculation of the approached solution of the \(p\)-adic polynomial equation \(f(x)=x^{2}-a=0\). We establish the rate of convergence of this method. Finally, we also determine how many iterations are needed to obtain a specified number of correct digits in the approximate.
Keywords:
\(p\)-adic number, square roots, Householder iterative method, Hensel's lemma,, rate of convergenceMathematics Subject Classification:
26E30, 11E95, 65H04- Pages: 36-46
- Date Published: 01-01-2022
- Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)
S. Albeverio, A.Y. Khrennikov and V.M. Shelkovich, Theory of p-adic distributions: linear and nonlinear models, Cambridge University Press, 2010.
J. B. BACAni, J. F. T. Rabago, Steffensen's analogue for approximating roots of $p$-adic polynomial equations. Numerical Computations: Theory and Algorithms (NUMTA-2016)., 1776(1)(2016), 090038$1-090038-4$.
W.A. COPPel, Number Theory: An introduction to mathematics, Springer Science & Business Media, 2009.
J.F. Epperson, An introduction to numerical methods and analysis, John Wiley & Sons, 2013.
B. Fine And G. Rosenberger, Number Theory: An Introduction via the Density of Primes, Birkhäuser, 2016.
F.Q. GouveA, p-adic Numbers: An Introduction, Springer Science & Business Media, 2012.
R.T. Gregory and E.V. Krishnamurthy, Methods and applications of error-free computation, Springer Science & Business Media, 2012.
K. HENSEL, Über eine neue Begründung der Theorie der algebraischen Zahlen. JJahresber. Dtsch. Math.Ver., 6(1897), 83-88.
A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.
P.S.P. Ignacio, J.M. Addawe and J.A. Nable, $P$-adic Qth Roots Via Newton-Raphson Method, Thai $J$. Math., 14(2)(2016), 417-429.
P. S. P. Ignacio, J. M. Addawe, W. V. Alangui and J. A. Nable, Computation of square and cube roots of p-adic numbers via Newton-Raphson method, J.M.R., 5(2)(2013), 31-38.
S. KAток, p-adic Analysis Compared with Real, Vol. 37, American Mathematical Soc, 2007.
M.P. KnApp And C. Xenophontos, Numerical Analysis meets Number Theory: Using rootfinding methods to calculate inverses $bmod p^n$, Appl. Anal. Discrete Math., 4(2010), 23-31.
M. Kecies, The Performance of the Secant Method in the Field of $p$-dic Numbers, Malaya J. Mat., $mathbf{9}(mathbf{2})(2021), 28-38$.
A. Quarteroni, R. Sacco And F. Saleri, Méthodes Numériques: Algorithmes, analyse et applications, Springer Science & Business Media, 2008.
J.F.T. Rabago, Olver's Method for Solving Roots of p-adic Polynomial Equations, Italian J. Pure and Applied Math., 36(2016), 739-748.
J.F.T. Rabago, Halley's method for finding roots of $p$-adic polynomial equations, Int. J. Math. Anal., 10(10)(2016), 493-502.
F. A. SHAH AND M. A. NOoR, Variational iteration technique and some methods for the approximate solution of nonlinear equations,Appl. Math. Inf. Sci. Lett., 2(3)(2014), 85-93.
T. ZerZaini And M. Kecies, Computation of the cubic root of a p-adic number, J.M.R., 3(2011), 40-47.
T. ZERZAIHI And M. Kecies, General approach of the root of a p-adic number, Filomat., 27(2013), 431-436.
T. Z ERZAIHI , M. K ECIES AND M.P. K NAPP , Hensel codes of square roots of p-adic numbers, Appl. Anal.
Discrete Math., 4(2010), 32–44.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kecies Mohamed
This work is licensed under a Creative Commons Attribution 4.0 International License.