Some properties for subclass of analytic functions with nonzero coefficients
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0159Abstract
In the given article, we introduced new subclass of normalized analytic function namely \(R^t(1, A, B, \alpha)\). Coefficient inequality, necessary and sufficient condition for the functions in this class are given. The inclusion property and condition for univalancy with linear \(n^{\text {th }}\) derivative operator is also pointed out.
Keywords:
Univalent, Analytic, StarlikeMathematics Subject Classification:
Mathematics- Pages: 2259-2262
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Lee, H. J., Cho, N. E. and Owa, S., Properties for certain subclass of analytic functions with nonzero coefficients, Journal of Inequality and Applications., (2014). DOI: https://doi.org/10.1186/1029-242X-2014-506
Pascu, N. N., Obradovic, M. and Radomir, I., On Alexander-Noshiro-Warsschawski theorem, Filomat, 8(1994), 99-101.
Ponnusamy, S. and Vuorinen, M., Univalence and convexity properties for Gaussian hypergeometric functions, Preprint 82, Department of Mathematics, University of Helsinki, (1995).
Ruscheweyh, S. and Singh, V., On the order of star likeness of hypergeometric functions, J. Math. Anal Appl, 113(1986), 1-11. DOI: https://doi.org/10.1016/0022-247X(86)90329-X
Dixit, K. K. and Pal, S.K., On a class of univalent functions related to complex order, Indian J. Pure App. Math, 26(9)(1995), 889-896.
Caplinger, T. R. and Causey, W. M., A class of univalent functions, Proc. Am. Math. Soc, 39(1973), 357-361. DOI: https://doi.org/10.1090/S0002-9939-1973-0320294-4
Kim, J. A. and Cho, N. E., Properties of convolutions for hypergeometric series with univalent functions, $A d v$. Differ. Equ, 2013(2013), Article Number-101. DOI: https://doi.org/10.1186/1687-1847-2013-101
Dashrath,, On some classes related to spiral-like univalent and multivalent functions, $mathrm{PhD}$ thesis, Kanpur University, Kanpur, (1984).
Duren, P. L., Univalent functions, Springer: New York, (1983).
Jack, I. S., Functions star like and convex of order, $J$. Lond. Math. Soc, (1971), 3469-474.
- NA
Similar Articles
- S. Subhalakshmi, N. Balamani, On \(\lambda_g^\alpha\)-closed and \(\lambda_g^\alpha\)-open sets in topological spaces , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.