Fixed points of generalized \((\varphi,\psi)\)-Jaggi contractions in orbitally complete partially ordered metric spaces
Downloads
DOI:
https://doi.org/10.26637/mjm1001/007Abstract
In this paper, we introduce generalized \((\varphi,\psi)\)-Jaggi contraction mappings and prove the existence of fixed points for such mappings in orbitally complete partially ordered metric spaces. We provide examples in support of our results. Our results generalize the results of Harjani, Lopez and Sadarangani \cite{r26harj}.
Keywords:
orbitally continuous, Jaggi contraction, orbitally complete, generalized (ϕ,ψ)-Jaggi contractionMathematics Subject Classification:
47H10, 54H25- Pages: 79-89
- Date Published: 01-01-2022
- Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)
G.V.R. BABU, AND P.D. SAILAJA, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai J. of Math., 9(1)(2011), 1-10.
G.V.R. BABU, P.D. SAILAJA, AND K.T. KidanE, A fixed point theorem in orbitally complete partially ordered metric spaces, J. of Oper, 2013, 1-8, Article ID 404573.
J. HarJani, B. Lopez and K. Sadarangani, A fixed point theorem for mappings satisying a contractive condition of rational type on a partially ordered metric space, Abstr. and Appl. Anal., 2010, (2010), 1-8.
D.S. JAGgI, Some unique fixed point theorems, Indian J. of Pure and Appl. Math., 8(1977), 223 - 230.
M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. of Aust. Math. Soc., 30(1984), 1-9.
A. C. M. Ran And M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. of Amer. Math. Soc., 135(5)(2004), 1435-1443.
B. Samet, C. Vetro and F. Vetro, From metric spaces to partially metric spaces, Fixed Point Theory and Applications, 5(2013), 1-10.
K. P. R. Sastry, G. V. R. Babu, K. K. M. Sarma and P. H. Krishna, Fixed points of selfmaps on partially ordered metric spaces with control functions involving rational type expressions, Jour. of Adv. Res. in Pure Math., 7(4)(2015), 92-102.
D. Turkoglu, O. Ozer And B. Fisher, Fixed point theorems for T-orbitally complete space, Mathematica, 9(1999), 211-218.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 G. V. R. Babu, K. K. M. Sarma, V. A. Kumari
This work is licensed under a Creative Commons Attribution 4.0 International License.