Inverse isolate domination number on a vertex switching of cycle related graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0172Abstract
Let \(G\) be non-trivial graph. A subset \(S \subset V(G)\) is called a isolate dominating set of \(G\) if is a dominating set and \(\delta(<S>)=0\). The set \(S^{\prime} \subset V(G)-S\) such that \(S^{\prime}\) is a dominating set of \(G\) and \(\delta\left(<S^{\prime}>\right)=0\), then \(S^{\prime}\) is called an inverse isolate dominating set with respect to \(S\). The minimum cardinality of an inverse isolate dominating set is called an inverse isolate dominating number and is denoted by \(\gamma_0^{-1}(G)\). In this paper we find inverse isolate dominating number on vertex switching of some cycle related graphs.
Keywords:
Domination, Isolate domination, Inverse domination, SwitchingMathematics Subject Classification:
Mathematics- Pages: 2309-2314
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Ayel, J and Favaron, O, Helms Are Graceful, In Progress in Graph Theory (Waterloo, Ont., 1982), Toronto: Academic Press, (1984), 89-92.
Delorme, D: Two sets of Graceful Graphs, J. Graph Theory. 4 , (1980) 247-250. DOI: https://doi.org/10.1002/jgt.3190040214
Ghosh, A, Boyd, S, and Saberi, A, Minimizing Effective Resistance of a Graph, Proc. 17th Internat. Sympos. Math. Th. Network and systems 1185-1196, (2006), 24-28.
Haynes, W., Hedetniemi, S. T., Slater, P. J., Domination in Graphs Advanced Topics, Marcel Dekker, New York, 1998. DOI: https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
Hedetniemi, S. T., Laskar, R, Topics in domination in graphs, Discrete Math., 86, 1990, 1993-1999 DOI: https://doi.org/10.1016/0012-365X(90)90365-O
C. Jayasekaran and A. Vijila Rani, Inverse isolate domination number of a Graph, Communicated.
Kulli, V. R., Sigarkant, S. C., Inverse domination in graphs, Nat. Acad Sci. Letters, 14(1991), 473-475.
Vilfred, V, Paulraj Joseph, J and Jayasekaran, C, Branches and Joints in the study of self-switching of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 6(2008), 111-122.
Weisstein, Eric W : Windmill Graph, MathWorld.
- NA
Similar Articles
- C. Jayasekaran, A. Sheeba, Relatively prime geodetic number of graphs , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- C. Jayasekaran, A. Sheeba, Relatively prime restrained geodetic number of graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.