The total geo chromatic number of a graph

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0178

Abstract

A total geo chromatic set of a graph \(G\) is a geo chromatic set \(S_c\) such that the subgraph induced by \(S_c\) has no isolated vertices. The minimum cardinality of a total geo chromatic set of \(G\) is the total geo chromatic number of \(G\) and is denoted by \(\chi_{t g}(G)\). A total geo chromatic set of cardinality \(\chi_{t g}(G)\) is called a \(\chi_{t g}\)-set of \(G\). The total geo chromatic number of some standard graphs are determined and some general properties satisfied by this concept are studied.

Keywords:

Geodetic number, chromatic number, geo chromatic number, total geo chromatic number, connected geo chromatic number

Mathematics Subject Classification:

Mathematics
  • S. Annie Ajila Department of Mathematics, Scott Christian College(Autonomus), Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.
  • J. Robert Victor Edward Department of Mathematics, Scott Christian College(Autonomus), Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.
  • Pages: 2337-2341
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

S. Beulah Samli and S. Robinson Chellathurai: $G e o$ Chromatic Number of a Graph, Int. J. Sci. Res. Math. and Stat. Scien., 5(6)(2018), $259-264$.[2] S. BEulahSamLi, J. John and S. Robinson ChellathuRaI: The Double Geo Chromatic Number of a Graph, Bull. Int. Math. Virtual Inst., 11(1)(2021), 55 - 68.

F. Buckley and F. Harary: Distance in Graphs, Addison - Wesley, Redwood City, CA, 1990.

G. ChaRtrand, F. HARARY AND P. ZHANG: On the Geodetic Number of a Graph, Networks 39(2002), 1 - 6. DOI: https://doi.org/10.1002/net.10007

H. Escuadro, R. Gera, A.Hansberg, N. Jafari Rad and L. Volkmann : Geodetic Domination in Graphs, J. Combin. Math. Combin. Comput., 77(2011), 89 - 101.

F. Harary: Graph Theory Addison - Wesley, Reading, Mass, 1972.

F. HARARY, E. LoukAKIS AND C. Tsouros: The Geodetic Number of a Graph Math. Comput. Modeling, 17(11) (1993), $89-95$. DOI: https://doi.org/10.1016/0895-7177(93)90259-2

D. A. Mojdeh And N. J. RaD: Connected Geodomination in Graphs J. Discrete Math. Scien, and Cryp., 9(1) (2006), $177-186$ DOI: https://doi.org/10.1080/09720529.2006.10698070

M. Мohammed Abdul Khayoom and P. ARulPaUlSudHAHAR: Monophonic Chromatic Parameter in a Connected Graph Int. J. Math. Anal., 11(19)(2017), 911 920. DOI: https://doi.org/10.12988/ijma.2017.78114

A. P. Santhakumaran, P. Titus and J. John: On the Connected Geodetic Number of a Graph Journal of Com. Math. Com. Comp., 69(2009), $219-229$.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

S. Annie Ajila, and J. Robert Victor Edward. “The Total Geo Chromatic Number of a Graph”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2337-41, doi:10.26637/MJM0804/0178.