Common fixed point theorems in \(\mathscr{L}\)-fuzzy metric space
Downloads
DOI:
https://doi.org/10.26637/MJM0804/0179Abstract
In this paper, we prove some common fixed point theorems for self mappings in complete \(\mathscr{L}\) - fuzzy metric space which is introduced by Saadati, Razani and Adibi.
Keywords:
Common fixed point, Complete \(\mathscr{L}\) - fuzzy metric spaceMathematics Subject Classification:
Mathematics- Pages: 2342-2345
- Date Published: 01-10-2020
- Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
Adibi, H., Cho, Y.J., O'Regan, D. and Saadati, R.: Common fixed point theorems in $mathscr{L}$-fuzzy metric spaces, $A p$ plied Mathematics and computation 182, (2006) 820-828. DOI: https://doi.org/10.1016/j.amc.2006.04.045
Balasubramaniam, P., Muralisankar, S. and Pant, R.P.: Common fixed points of four mappings in a fuzzy metric spaces, J. Fuzzy Math. 10(2), (2002) 379-384.
Cho, S.H: On common fixed points in fuzzy metric spaces, Int. Math. Forum 1(10), (2006) 471-479. DOI: https://doi.org/10.12988/imf.2006.06038
Deschrijver, G., Cornelis, C. and Kerre, E.E.: On the representation of intuitionistic fuzzy $t$-norms and $t$-conorms, IEEE Transactions on Fuzzy Sys. 12, (2004) 45-61. DOI: https://doi.org/10.1109/TFUZZ.2003.822678
Deschrijver, G. and Kerre, E.E.: On the relationship between some extensions of fuzzy set theory, Fuzzy sets and Systems 33, (2003) 227-235. DOI: https://doi.org/10.1016/S0165-0114(02)00127-6
George, A. and Veeramani, P.: On Some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, (1994) 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7
Goguen, J.: $mathscr{L}$-fuzzy sets, J. Math. Anal. Appl. 18, (1967) 145-174. DOI: https://doi.org/10.1016/0022-247X(67)90189-8
HakanEfe: Some results in $mathscr{L}$-Fuzzy Metric Spaces, Carpathian J. Math. 24, (2008) No.2(37-44).
Fang, J.X. : On fixed point theorems in fuzzy metric spaces, Fuzzy sets Sys. 46. (1992) 107-113. DOI: https://doi.org/10.1016/0165-0114(92)90271-5
Kramosil, I. and Michalek, J. : Fuzzy metric and statistical metric spaces,, Kybernetica 11, (1975) 326-334.
Saadati, R.: On the $mathscr{L}$-fuzzy topological spaces, Chaos Solitons and Fractals 37, (2008) 1419-1426. DOI: https://doi.org/10.1016/j.chaos.2006.10.033
Saadati, R. and Park, J.H.: On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27(2), (2006) 331-344. DOI: https://doi.org/10.1016/j.chaos.2005.03.019
Saadati, R., Razani, A. and Adibi, H.: A common fixed point theorem in $mathscr{L}$-fuzzy metric spaces, Chaos Solitons and Fractals doi:10.1016/j.chacos.2006.01.023.
Saadati, R., Sedghi, S., Shobe, N. and Vaespour, S.M.: Some common fixed point theorems in complete $mathscr{L}$-fuzzy metric spaces, Bull. Malays. Math. Sci. Soc. 31(1), (2008) 77-84. DOI: https://doi.org/10.1515/dema-2008-0219
Zadeh, L.A.: Fuzzy sets, Information and Control 8, (1965) 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
- NA
Similar Articles
- R. Suja Kumari, K. Chithamparathanu Pillai, The highly \(D_2\) – distance of irregular labeling fuzzy graphs on some special graphs , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.