Common fixed point theorems in \(\mathscr{L}\)-fuzzy metric space

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0179

Abstract

In this paper, we prove some common fixed point theorems for self mappings in complete \(\mathscr{L}\) - fuzzy metric space which is introduced by Saadati, Razani and Adibi.

Keywords:

Common fixed point, Complete \(\mathscr{L}\) - fuzzy metric space

Mathematics Subject Classification:

Mathematics
  • B. Revathy Research Scholar - 19121072092003, The M.D.T. Hindu College, Tirunelveli-627 010.
  • S. Chelliah PG and Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627 010.
  • Pages: 2342-2345
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

Adibi, H., Cho, Y.J., O'Regan, D. and Saadati, R.: Common fixed point theorems in $mathscr{L}$-fuzzy metric spaces, $A p$ plied Mathematics and computation 182, (2006) 820-828. DOI: https://doi.org/10.1016/j.amc.2006.04.045

Balasubramaniam, P., Muralisankar, S. and Pant, R.P.: Common fixed points of four mappings in a fuzzy metric spaces, J. Fuzzy Math. 10(2), (2002) 379-384.

Cho, S.H: On common fixed points in fuzzy metric spaces, Int. Math. Forum 1(10), (2006) 471-479. DOI: https://doi.org/10.12988/imf.2006.06038

Deschrijver, G., Cornelis, C. and Kerre, E.E.: On the representation of intuitionistic fuzzy $t$-norms and $t$-conorms, IEEE Transactions on Fuzzy Sys. 12, (2004) 45-61. DOI: https://doi.org/10.1109/TFUZZ.2003.822678

Deschrijver, G. and Kerre, E.E.: On the relationship between some extensions of fuzzy set theory, Fuzzy sets and Systems 33, (2003) 227-235. DOI: https://doi.org/10.1016/S0165-0114(02)00127-6

George, A. and Veeramani, P.: On Some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, (1994) 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7

Goguen, J.: $mathscr{L}$-fuzzy sets, J. Math. Anal. Appl. 18, (1967) 145-174. DOI: https://doi.org/10.1016/0022-247X(67)90189-8

HakanEfe: Some results in $mathscr{L}$-Fuzzy Metric Spaces, Carpathian J. Math. 24, (2008) No.2(37-44).

Fang, J.X. : On fixed point theorems in fuzzy metric spaces, Fuzzy sets Sys. 46. (1992) 107-113. DOI: https://doi.org/10.1016/0165-0114(92)90271-5

Kramosil, I. and Michalek, J. : Fuzzy metric and statistical metric spaces,, Kybernetica 11, (1975) 326-334.

Saadati, R.: On the $mathscr{L}$-fuzzy topological spaces, Chaos Solitons and Fractals 37, (2008) 1419-1426. DOI: https://doi.org/10.1016/j.chaos.2006.10.033

Saadati, R. and Park, J.H.: On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27(2), (2006) 331-344. DOI: https://doi.org/10.1016/j.chaos.2005.03.019

Saadati, R., Razani, A. and Adibi, H.: A common fixed point theorem in $mathscr{L}$-fuzzy metric spaces, Chaos Solitons and Fractals doi:10.1016/j.chacos.2006.01.023.

Saadati, R., Sedghi, S., Shobe, N. and Vaespour, S.M.: Some common fixed point theorems in complete $mathscr{L}$-fuzzy metric spaces, Bull. Malays. Math. Sci. Soc. 31(1), (2008) 77-84. DOI: https://doi.org/10.1515/dema-2008-0219

Zadeh, L.A.: Fuzzy sets, Information and Control 8, (1965) 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

B. Revathy, and S. Chelliah. “Common Fixed Point Theorems in \(\mathscr{L}\)-Fuzzy Metric Space”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2342-5, doi:10.26637/MJM0804/0179.