Group mean cordial labeling of some splitting graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0804/0181

Abstract

Let \(G\) be a \((p, q)\) graph and let \(A\) be a group. Let \(f: V(G) \longrightarrow A\) be a map. For each edge \(u v\) assign the label  \(\left\lfloor\frac{o(f(u))+o(f(v))}{2} \mid\right.\). Here \(o(f(u))\) denotes the order of \(f(u)\) as an element of the group \(A\). Let \(\mathbb{I}\) be the set of all integers that are labels of the edges of \(G\). \(f\) is called a group mean cordial labeling if the following conditions hold:
(1) For \(x, y \in A,\left|v_f(x)-v_f(y)\right| \leq 1\), where \(v_f(x)\) is the number of vertices labeled with \(x\).
(2) For \(i, j \in \mathbb{I},\left|e_f(i)-e_f(j)\right| \leq 1\), where \(e_f(i)\) denote the number of edges labeled with \(i\).
A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take \(A\) as the group of fourth roots of unity and prove that,the splitting graphs of Path \(\left(P_n\right), \operatorname{Cycle}\left(C_n\right), \operatorname{Comb}\left(P_n \odot K_1\right)\) and Complete Bipartite graph ( \(K_{n, n}\) when \(n\) is even ) are group mean cordial graphs. Also we characterized the group mean cordial labeling of the splitting graph of \(K_{1, n}\).

Keywords:

Cordial labeling, mean labeling, group mean cordial labeling

Mathematics Subject Classification:

Mathematics
  • R.N. Rajalekshmi Research Scholar, Reg. No. 18224012092018, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
  • R. Kala Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
  • Pages: 2352-2355
  • Date Published: 01-10-2020
  • Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)

S. Athisayanathan, R. Ponraj, and M. K. Karthik Chidambaram, Group a cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, $10(1)(2017), 1-11$.

I. Cahit, Cordial graphs a weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201-207.

c J. A. Gallian A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatories, No. DS6, Dec $7(2015)$.

F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1972.

R. Ponraj, M. Sivakumar, M. Sundaram, Mean cordial labeling of graphs, Open Journal of Discrete Mathematics, 2(2012), 145-148. DOI: https://doi.org/10.4236/ojdm.2012.24029

S. Somasundaram and R. Ponraj, Mean labeling of graphs, Natl. Acad. Sci. Let., 26(2003), 210-213.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2020

How to Cite

R.N. Rajalekshmi, and R. Kala. “Group Mean Cordial Labeling of Some Splitting Graphs”. Malaya Journal of Matematik, vol. 8, no. 04, Oct. 2020, pp. 2352-5, doi:10.26637/MJM0804/0181.