Modeling and optimal control of the dynamics of narcoterrorism in the Sahel
Downloads
DOI:
https://doi.org/10.26637/mjm1202/003Abstract
This work explores some aspects of modeling and controlling narcoterrorism in the Sahel. We examine the multidimensional factors underlying this dynamic, identifying interactions and recruitment within the narcoterrorist class. We then develop a preventive model and decision-support tools to optimize resource allocation and formulate more effective counter-narcotics and brigandage policies. This research will certainly contribute to the fight against narcoterrorism in the Sahel by proposing solutions based on rigorous scientific approaches and assessing the benefits and limitations of optimal modeling and control.
Keywords:
narcoterrorism, local and global asymptotic stability, global threshold, optimal control, and numerical simulation.Mathematics Subject Classification:
49K15, 93B05, 93C15, 93D23- Pages: 163-185
- Date Published: 01-04-2024
- Vol. 12 No. 02 (2024): Malaya Journal of Matematik (MJM)
A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical science, SIAM, (1994),
J. BONY, PRINCIPE DU MAXIMUM, inégalité de harnacket unicité du problème de cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), pp. 277-304.
R. Boyd and P. Richerson, Culture and the Evolutionary Process, University of Chicago Press, Chicago, London, 1976.
C. Castillo-Chavez and Baojun Song, Models for the transmission dynamics of fanatic behaviors, in Bioterrorism: Mathematical Modeling Applications in Homeland Security" (eds. H. T. Banks and Carlos Castillo-Chavez), Frontiers in Applied Mathematics, Vol. 28, Society for Industrial and Applied Mathematics, Philadelphia, PA, (2003), 155.
D. Dennett, Darwin's Dangerous Idea, Simon and Schuster, New York, London, Toronto, Sydney, Tokyo, Singapore, 1995.
M. W. Feldman and L. L. Cavalli-Sforza, On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem, in Mathematical Evolutionary Theory, M. W. Feldman, ed., Princeton University Press, Princeton, NJ, 1989, pp. 145-173.
W.H. Fleming, R.W. Richel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975
K. P. Hadelerand, C.Castillo-Chavez, Acore group model for disease transmission, J. Math. Biosci., 128 (1995), pp. 41-55.
H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomath 56, Springer-Verlag, Berlin, 1984.
D. L. LuKes, Differential equations : classical to controlled / Dahlard L. Lukes, Academic Press, New York: 1982.
C. Lumsden and E. O. Wilson, Genes, Mind and Culture: The Co-evolutionary Process, Havard University Press, Cambridge, MA, 1981.
L.S. Pontryagin, V.G. BoltyanskiI, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (Wiley, New York, 1962)
B. Song, Dynamical Epidemical Models and Their Applications, Ph.D. thesis, Cornell University, Ithaca, NY, 2002.
E.P. VALDIVIEzo, Une brève étude du nombre de reproduction en épidémiologie et leurs applications, Mémoire de Master de Mathématiques pour les Sciences du Vivant, Institut Polytechnique de Paris, 2 septembre 2020.
R. Varga, Factorization and normalized iterative methods, in Boundary problems in differential equations, R. Langer, ed., university of Wisconsin Press, 1960, pp. 121-142.
R. V ARGA , Matrix iterative analysis, Prentice-Hall, 1962.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mathieu Romaric POODA, Yacouba SIMPORE, Oumar TRAORE
This work is licensed under a Creative Commons Attribution 4.0 International License.