Approximation results for PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space

Downloads

DOI:

https://doi.org/10.26637/mjm11S/012

Abstract

In this paper we prove the approximation results for existence and uniqueness of the solution of PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space. We employ the Dhage monotone iteration method based on a recent hybrid fixed point theorem of Dhage (2022) and Dhage et al. (2022) for the main results of this paper. Finally an example is indicated to illustrate the abstract ideas involed in the approximation results.

Keywords:

Integrodifferential equation, Hybrid fixed point principle, Dhage Monotone iteration method, Approximation theorem, Ulam-Hyers stability

Mathematics Subject Classification:

34A12, 34A34
  • Pages: 197-207
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ. New York 1967.

B.C. Dhage, Periodic boundary value problems of first order Carath´eodory and discontinuous differential equations, Nonlinear Funct. Anal. & Appl., 13(2) (2008), 323-352.

B. C. Dhage, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl., 5 (2013), 155-184. https://doi.org/10.7153/dea-05-11 DOI: https://doi.org/10.7153/dea-05-11

B.C. Dhage, Dhage iteration method in the theory of IVPs of nonlinear first order functional differential equations, Malaya J. Mat. 5(4) (2017), 680-689. https://doi.org/10.26637/mjm0504/0011 DOI: https://doi.org/10.26637/MJM0504/0011

B.C. Dhage, Dhage iteration method in the theory of ordinary nonlinear PBVPs of first order functional differential equations, Commun. Optim. Theory 2017 (2017), Article ID 32, pp. 22.

https://doi.org/10.23952/cot.2017.32 DOI: https://doi.org/10.23952/cot.2017.32

B.C. Dhage, A coupled hybrid fixed point theorem for sum of two mixed monotone coupled operators in a partially ordered Banach space with applications, Tamkang J. Math., 50(1) (2019), 1-36.

https://doi.org/10.5556/j.tkjm.50.2019.2502 DOI: https://doi.org/10.5556/j.tkjm.50.2019.2502

B.C. Dhage, Coupled and mixed coupled hybrid fixed point principles in a partially ordered Banach algebra and PBVPs of nonlinear coupled quadratic differential equations, Differ. Equ. Appl., 11(1) (2019), 1-85.

https://doi.org/10.7153/dea-2019-11-01 DOI: https://doi.org/10.7153/dea-2019-11-01

B.C. Dhage, A Schauder type hybrid fixed point theorem in a partially ordered metric space with applications to nonlinear functional integral equations, J˜n¯an¯abha 52 (2) (2022), 168-181.

https://doi.org/10.58250/jnanabha.2022.52220 DOI: https://doi.org/10.58250/jnanabha.2022.52220

B.C. Dhage, S.B. Dhage, Approximating solutions of nonlinear first order ordinary differential equations, GJMS Special Issue for Recent Advances in Mathematical Sciences and Applications-13, GJMS, 2 (2) (2013), 25-35.

B.C. Dhage, S.B. Dhage, Approximating solutions of nonlinear PBVPs of hybrid differential equations via fixed point theory, Indian J. Math., 52(2015), 103-119.

B.C. Dhage, S.B. Dhage, Approximating positive solutions of nonlinear first order ordinary hybrid differential equations, Cogent Mathematics (2015), 2: 1023671.

https://doi.org/10.1080/23311835.2015.1023671 DOI: https://doi.org/10.1080/23311835.2015.1023671

B.C. Dhage, J.B. Dhage, S.B. Dhage, Approximating existence and uniqueness of solution to a nonlinear IVP of first order ordinary iterative differential equations, Nonlinear Studies, 29 (1) (2022), 303-314. DOI: https://doi.org/10.21203/rs.3.rs-2381198/v1

D. Gua, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, London 1988. https://doi.org/10.1016/c2013-0-10750-7 DOI: https://doi.org/10.1016/C2013-0-10750-7

A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, New York, 2003.

https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8

J.K. Hale, Theory of Functional Differential Equations, Springer Verlag, New York, Berlin, 1977. DOI: https://doi.org/10.1007/978-1-4612-9892-2

https://doi.org/10.1002/zamm.19730530122 DOI: https://doi.org/10.1002/zamm.19730530122

J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205 (1997), 423–433. https://doi.org/10.1006/jmaa.1997.5207 DOI: https://doi.org/10.1006/jmaa.1997.5207

J. J. Nieto, Periodic boundary value problems for first order impulsive ODEs, Nonlinear Anal. 51 (2002), 1223-1232. https://doi.org/10.1016/s0362-546x(01)00889-6 DOI: https://doi.org/10.1016/S0362-546X(01)00889-6

J[18] E. Zeidler, Nonlinear Functional Analysis: Part I, Springer Verlag, New York, 1985.

https://doi.org/10.1007/978-1-4612-5020-3 DOI: https://doi.org/10.1007/978-1-4612-5020-3

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Dhage, J., S. Dhage, and B. Dhage. “Approximation Results for PBVPs of Nonlinear First Order Ordinary Functional Differential Equations in a Closed Subset of the Banach Space:”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 197-0, doi:10.26637/mjm11S/012.