On the Pillai's problem involving two linear recurrent sequences: Padovan and Fibonacci

Downloads

DOI:

https://doi.org/10.26637/mjm1003/003

Abstract

In this paper, we find all integers \(c\) having at least two representations as a difference between linear recurrent sequences. This problem is a Pillai problem involving Padovan and Fibonacci sequence. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.

Keywords:

Linear forms in logarithm, Diophantine equations, Fibonacci sequence, Padovan sequence, Diophantine equation

Mathematics Subject Classification:

11B39, 11J86, 11D61
  • Pagdame Tiebekabe Cheikh Anta Diop University, Faculty of Science, Department of Mathematics and Computer science, Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications (LACGAA) Dakar, Senegal.
  • Serge Adonsou African Institute for Mathematical Sciences (AIMS), South Africa.
  • Pages: 204-215
  • Date Published: 01-07-2022
  • Vol. 10 No. 03 (2022): Malaya Journal of Matematik (MJM)

A. BaKer and H. Davenport, The equations $3 x^2-2=y^2$ and $8 x^2-7=z^2$, Quart.J. Math. Ser., 20(2)(1969), 129-137.

J. J. Bravo, F. LUCA, AND K. YAZÁn, On a problem of Pillai with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc., 54(3)(2017), 1069-1080.

K. C. Chim, I. Pink And V. Ziegler, On a variant of Pillai's problem, Int. J. Number Theory, 13(7)(2017), 1711-1717.

K. C. CHIM, I. PINK AND V. ZIEgLer, On a variant of Pillai's problem II, preprint, 18 pages.

M. Ddamulira, F. Luca and M. Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Math. Sci., 127(3)(2017), 411-421.

M. Ddamulira, C. A. Gomze and F. Luca, On a problem of Pillai with $k$-generalized Fibonacci numbers and powers of 2, preprint, 24 pages.

A. Dujella and A. Petho, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49(3) (1998), 291-306.

A. Herschfeld, The equation $2^x-3^y=d$, Bull. Amer. Math. Soc., 41 (1935), 631-635.

A. Herschfeld, The equation $2^x-3^y=d$, Bull. Amer. Math. Soc., 42 (1936), 231-234.

E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Math., 64(6) (2000), 1217-1269.

P. MiHĂIlESCU, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.

S. S. PIllaI, On $a^x+b^y=c$, J. Indian Math. Soc., 2(1936), 119-122.

S. S. PillaI, A correction to the paper On $a^x+b^y=c$, J. Indian Math. Soc., 2 (1937), 215-221.

P. Tiebekabe & I. Diouf, On solutions of the Diophantine equation $L_n+L_m=3^a$. Malaya Journal of Matematik, 9(4)(2021), 228-238.

P. Tiebekabe And I. Diouf, On solutions of the Diophantine equations $F_{n_1}+F_{n_2}+F_{n_3}+F_{n_4}=2^a$, Journal of Algebra and Related Topics, 9(2)(2021), http://dx.doi.org/10.22124/JART.2021.19294.1266.

P. Tiebekabe and I. Diouf, Powers of three as difference of two Fibonacci numbers, JP Journal of Algebra, Number Theory and Applications, 49(2)(2021), 185-196.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2022

How to Cite

Tiebekabe, P., and S. . Adonsou. “On the Pillai’s Problem Involving Two Linear Recurrent Sequences: Padovan and Fibonacci”. Malaya Journal of Matematik, vol. 10, no. 03, July 2022, pp. 204-15, doi:10.26637/mjm1003/003.