Mild solutions for some nonautonomous evolution equations with state-dependent delay governed by equicontinuous evolution families

Downloads

DOI:

https://doi.org/10.26637/mjm11S/014

Abstract

In this work, we study the existence solutions and the dependence continuous with the initial data for some nondensely nonautonomous partial functional differential equations with state-dependent delay in Banach spaces. We assume that the linear part is not necessarily densely defined, satisfies the well-known hyperbolic conditions and generate a noncompact evolution family. Our existence results are based on Sadovskii fixed point Theorem. An application is provided to a reaction-diffusion equation with state-dependent delay.

Keywords:

Nondensely nonautonomous evolution equations, mild solution, Kuratowski measure of non-compactness, State- dependent delay

Mathematics Subject Classification:

35R10, 47J35
  • Moussa El-Khalil Kpoumié Université de Ngaoundéré, ´ Ecole de Géologie et Exploitation Minière, Département de Mathématiques Appliquées et Informatique, B.P. 115 Meiganga, Cameroun
  • Yannick-Levis Djeunankam Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812 Yaounde, https://orcid.org/0009-0001-2459-2923
  • Joseph Mbang Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812 Yaounde; UMI 209 IRD/UPMC UMMISCO, Bondy, Projet MASAIE INRIA Grand Est, France and Projet GRIMCAPE, LIRIMA
  • Pierre Noundjeu Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812 Yaounde
  • Pages: 227-240
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

A KRID , T., M ANIAR , L., O UHINOU , A. , Periodic solutions of non densely nonautonomous differential

equations with delay, Afr. Diaspora J. Math., 15(1)(2013), 1–18.

A RENDT , W., G RABOSCH , A., G REINER , G., G ROH , U., L OTZ , H.P., M OUSTAKAS , U., N AGEL , R., N EUBRANDER , B., S CHLOTTERBECK , U. , One-parameter Semigroup of Positive Operators, Springer, Berlin (1984).

A RINO , O., H BIB , M.L.,A IT D ADS , E., Delay Differential Equations and Applications, Mathematics, Physics and Chemistry, 205(2002).

B ANA ’ S , J. , On measures of non compactness in Banach spaces, Comment. Math. Univ. Carolin., 21(1)(1980), 131–143.

B ELMEKKI , M., B ENCHOHRA , M., E ZZINBI , K. , Existence results for some partial functional differential

equations with state-dependent delay, Appl. Math. Lett., 24(2011), 1810–1816. DOI: https://doi.org/10.1016/j.aml.2011.04.039

C HEN , P., Z HANG , X., L I , Y. , Existence of mild solutions to partial differential equations with non-

instantaneous impulses, Electron. J. Differ. Equ., 2016(241)(2016), 1–11.

C HEN , P., Z HANG , X., L I , Y., Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, Journal of Fixed Point Theory and Applications, 21(84)(2019), 1–17. DOI: https://doi.org/10.1007/s11784-019-0719-6

D A P RATO , G., S INESTRARI , E. , Differential operators with nondense domain, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 14(2)(1987), 285–344.

E ZZINBI , K., B EKOLLE , D., K POUMIE , M.E.K. , Periodic solutions for some nondensely nonautonomous partial functional differential equations in fading memory spaces, Differ. Equ. Dyn. Syst., 26(1-3)(2018), 177–197. DOI: https://doi.org/10.1007/s12591-016-0331-9

H ALE , J.K, K ATO , J., Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj, 21(1978),

–41.

H INO , Y., M URAKAMI , S., N AITO T., Functional Differential Equations with Infinite Delay, Lectures Notes in Mathematics, vol. 1473. Springer 2006

K ATO , T., Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo, 17(1970), 241–258.

K ATO , T., Linear evolution equations of hyperbolic type II, J. Math. Soc. Japan, 25(4)(1973), 648–666. DOI: https://doi.org/10.2969/jmsj/02540648

K POUMIE , M.E L -K, E ZZINBI , K., B EKOLLE , D., Nonautonomous partial functional differential equations; existence and regularity, Nonautonomous Dynamical Systems, 4(1)(2017), 108–127. DOI: https://doi.org/10.1515/msds-2017-0010

K POUMIE , M. E. K., N SANGOU , A. H. G., N DAMBOMVE , P., Z ABSONRE , I., M BOUTNGAM , S., Existence

of solutions for some nonautonomous partial functional differential equations with state-dependent delay,

SeMA, 77(2020), 107–118. DOI: https://doi.org/10.1007/s40324-019-00206-w

O KA , H., T ANAKA , N., Evolution operators generated by non densely defined operators, Math. Nachr.,

(11)(2005), 1285–1296.

P AZY , A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer,

Berlin (1983).

T ANAKA , N., Semilinear equations in the hyperbolic case, Nonlinear Anal. Theory Methods Appl.,

(5)(1995), 773–788.

T ANAKA , N., Quasilinear evolution equations with non-densely defined operators, Differ. Integral Equ.,

(1996), 1067–1106.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Kpoumié, M. E.-K., Y.-L. . Djeunankam, J. Mbang, and P. . Noundjeu. “Mild Solutions for Some Nonautonomous Evolution Equations With State-Dependent Delay Governed by Equicontinuous Evolution Families”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 227-40, doi:10.26637/mjm11S/014.