Mild solutions for some nonautonomous evolution equations with state-dependent delay governed by equicontinuous evolution families
Downloads
DOI:
https://doi.org/10.26637/mjm11S/014Abstract
In this work, we study the existence solutions and the dependence continuous with the initial data for some nondensely nonautonomous partial functional differential equations with state-dependent delay in Banach spaces. We assume that the linear part is not necessarily densely defined, satisfies the well-known hyperbolic conditions and generate a noncompact evolution family. Our existence results are based on Sadovskii fixed point Theorem. An application is provided to a reaction-diffusion equation with state-dependent delay.
Keywords:
Nondensely nonautonomous evolution equations, mild solution, Kuratowski measure of non-compactness, State- dependent delayMathematics Subject Classification:
35R10, 47J35- Pages: 227-240
- Date Published: 01-10-2023
- Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
A KRID , T., M ANIAR , L., O UHINOU , A. , Periodic solutions of non densely nonautonomous differential
equations with delay, Afr. Diaspora J. Math., 15(1)(2013), 1–18.
A RENDT , W., G RABOSCH , A., G REINER , G., G ROH , U., L OTZ , H.P., M OUSTAKAS , U., N AGEL , R., N EUBRANDER , B., S CHLOTTERBECK , U. , One-parameter Semigroup of Positive Operators, Springer, Berlin (1984).
A RINO , O., H BIB , M.L.,A IT D ADS , E., Delay Differential Equations and Applications, Mathematics, Physics and Chemistry, 205(2002).
B ANA ’ S , J. , On measures of non compactness in Banach spaces, Comment. Math. Univ. Carolin., 21(1)(1980), 131–143.
B ELMEKKI , M., B ENCHOHRA , M., E ZZINBI , K. , Existence results for some partial functional differential
equations with state-dependent delay, Appl. Math. Lett., 24(2011), 1810–1816. DOI: https://doi.org/10.1016/j.aml.2011.04.039
C HEN , P., Z HANG , X., L I , Y. , Existence of mild solutions to partial differential equations with non-
instantaneous impulses, Electron. J. Differ. Equ., 2016(241)(2016), 1–11.
C HEN , P., Z HANG , X., L I , Y., Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, Journal of Fixed Point Theory and Applications, 21(84)(2019), 1–17. DOI: https://doi.org/10.1007/s11784-019-0719-6
D A P RATO , G., S INESTRARI , E. , Differential operators with nondense domain, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 14(2)(1987), 285–344.
E ZZINBI , K., B EKOLLE , D., K POUMIE , M.E.K. , Periodic solutions for some nondensely nonautonomous partial functional differential equations in fading memory spaces, Differ. Equ. Dyn. Syst., 26(1-3)(2018), 177–197. DOI: https://doi.org/10.1007/s12591-016-0331-9
H ALE , J.K, K ATO , J., Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj, 21(1978),
–41.
H INO , Y., M URAKAMI , S., N AITO T., Functional Differential Equations with Infinite Delay, Lectures Notes in Mathematics, vol. 1473. Springer 2006
K ATO , T., Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo, 17(1970), 241–258.
K ATO , T., Linear evolution equations of hyperbolic type II, J. Math. Soc. Japan, 25(4)(1973), 648–666. DOI: https://doi.org/10.2969/jmsj/02540648
K POUMIE , M.E L -K, E ZZINBI , K., B EKOLLE , D., Nonautonomous partial functional differential equations; existence and regularity, Nonautonomous Dynamical Systems, 4(1)(2017), 108–127. DOI: https://doi.org/10.1515/msds-2017-0010
K POUMIE , M. E. K., N SANGOU , A. H. G., N DAMBOMVE , P., Z ABSONRE , I., M BOUTNGAM , S., Existence
of solutions for some nonautonomous partial functional differential equations with state-dependent delay,
SeMA, 77(2020), 107–118. DOI: https://doi.org/10.1007/s40324-019-00206-w
O KA , H., T ANAKA , N., Evolution operators generated by non densely defined operators, Math. Nachr.,
(11)(2005), 1285–1296.
P AZY , A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer,
Berlin (1983).
T ANAKA , N., Semilinear equations in the hyperbolic case, Nonlinear Anal. Theory Methods Appl.,
(5)(1995), 773–788.
T ANAKA , N., Quasilinear evolution equations with non-densely defined operators, Differ. Integral Equ.,
(1996), 1067–1106.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Moussa El-Khalil Kpoumié, Yannick-Levis Djeunankam, Joseph Mbang, Pierre Noundjeu
This work is licensed under a Creative Commons Attribution 4.0 International License.