Double domination number of the shadow (2,3)-distance graphs

Downloads

DOI:

https://doi.org/10.26637/mjm1102/011

Abstract

Let G  (V,E) be a graph with the vertex set V (G) and S be a subset of V(G). If every vertex of V is dominated by S at least twice, then the set S is called a double domination set of the graph. The number of elements of the double domination set with the smallest cardinality is called double domination number and denoted by 2 (G)  notation. In this paper, we discussed the double domination parameter on some types of shadow distance graphs such as cycle, path, star, complete bipartite and wheel graphs.

Keywords:

Domination, double domination, shadow distance graph

Mathematics Subject Classification:

General Mathematics
  • Aysun Aytaç Faculty of Science, Department of Mathematics, Ege University, ˙ Izmir, 35100, Turkey.
  • Ayşen Mutlu Faculty of Science, Department of Mathematics, Ege University, ˙ Izmir, 35100, Turkey.
  • Pages: 228-238
  • Date Published: 01-04-2023
  • Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)

A. A YTAC ¸ AND T. T URACI , On the bondage, strong and weak bondage numbers in complementary prism

graphs, Comput. Sci. J. Moldova, 29(2021), 59–75.

V. A YTAC ¸ AND Z. N. B ERBERLER , Average independent domination in complementary prisms, Bull. Int.

Math. Virtual Inst., 10(2020), 157–164.

V. A YTAC ¸ AND T. T URACI , Exponential domination and bondage numbers in some graceful cyclic structure, Nonlinear Dyn. Syst. Theory, 17(2017), 139–149.

C. B ERGE , Graphs and hypergraphs, American Elsevier Pub. Co., 1973.

M. B LIDIA , M. C HELLALI , T. W. H AYNES , AND M. A. H ENNING , Independent and double domination in trees, Util. Math., 70(2006), 159–173.

C. C¸ IFTC ¸ I AND A. A YTAC ¸ , Porous exponential domination number of some graphs, Numer. Methods Partial Differential Equations, 37(2021), 1385–1396, https://doi.org/10.1002/num.22585. DOI: https://doi.org/10.1002/num.22585

C. C¸ IFTC ¸ I AND V. A YTAC ¸ , Disjunctive total domination subdivision number of graphs, Fund. Inform.,

(2020), 15–26, https://doi.org/10.3233/FI-2020-1928. DOI: https://doi.org/10.3233/FI-2020-1928

G. C HARTRAND AND L. L ESNIAK , Graphs & digraphs, Boca Raton : Chapman & Hall/CRC, 4 ed., 2005.

M. C HELLALI , A note on the double domination number in trees, AKCE Int. J. Graphs Comb., 3(2006),

–150.

X.- G . C HEN AND L. S UN , Some new results on double domination in graphs, J. Math. Res. Exposition,

(2005), 451–456.

E. J. C OCKAYNE , R. M. D AWES , AND S. T. H EDETNIEMI , Total domination in graphs, Networks, 10(1980),

–219, https://doi.org/10.1002/net.3230100304. DOI: https://doi.org/10.1002/net.3230100304

J. A. G ALLIAN , A dynamic survey of graph labeling, Electron. J. Combin., 17(2014), 60–62.

F. H ARARY AND T. W. H AYNES , Double domination in graphs, Ars Combin., 55(2000), 201–213.

T. H AYNES , D. K NISLEY , E. S EIER , AND Y. Z OU , A quantitative analysis of secondary rna structure using domination based parameters on trees, BMC Bioinform., 7(2006), https://doi.org/10.1186/1471-2105-7-108. DOI: https://doi.org/10.1186/1471-2105-7-108

T. W. H AYNES , S. T. H EDETNIEMI , AND P. J. S LATER , Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.

M. A. H ENNING AND V. N AICKER , Disjunctive total domination in graphs, J. Comb. Optim., 31(2016), 1090–1110, https://doi.org/10.1007/s10878-014-9811-4. DOI: https://doi.org/10.1007/s10878-014-9811-4

Z. K ARTAL Y ILD IZ AND A. A YTAC ¸ , Semitotal domination of some known trees, Bull. Int. Math. Virtual Inst., 11(2021), 147–158.

U. V. C. K UMAR AND R. M URALI , Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2016), 125–130.

C. L. L IU , Introduction to combinatorial mathematics, McGraw-Hill Book Co., New York-Toronto, Ont.-

London, 1968.

B. S OORYANARAYANA , Certain Combinatorial Connections Between Groups, Graphs and Surfaces, PhD

Thesis, 1998.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2023

How to Cite

Aytaç, A., and A. Mutlu. “Double Domination Number of the Shadow (2,3)-Distance Graphs”. Malaya Journal of Matematik, vol. 11, no. 02, Apr. 2023, pp. 228-3, doi:10.26637/mjm1102/011.