Double domination number of the shadow (2,3)-distance graphs
Downloads
DOI:
https://doi.org/10.26637/mjm1102/011Abstract
Let G (V,E) be a graph with the vertex set V (G) and S be a subset of V(G). If every vertex of V is dominated by S at least twice, then the set S is called a double domination set of the graph. The number of elements of the double domination set with the smallest cardinality is called double domination number and denoted by 2 (G) notation. In this paper, we discussed the double domination parameter on some types of shadow distance graphs such as cycle, path, star, complete bipartite and wheel graphs.
Keywords:
Domination, double domination, shadow distance graphMathematics Subject Classification:
General Mathematics- Pages: 228-238
- Date Published: 01-04-2023
- Vol. 11 No. 02 (2023): Malaya Journal of Matematik (MJM)
A. A YTAC ¸ AND T. T URACI , On the bondage, strong and weak bondage numbers in complementary prism
graphs, Comput. Sci. J. Moldova, 29(2021), 59–75.
V. A YTAC ¸ AND Z. N. B ERBERLER , Average independent domination in complementary prisms, Bull. Int.
Math. Virtual Inst., 10(2020), 157–164.
V. A YTAC ¸ AND T. T URACI , Exponential domination and bondage numbers in some graceful cyclic structure, Nonlinear Dyn. Syst. Theory, 17(2017), 139–149.
C. B ERGE , Graphs and hypergraphs, American Elsevier Pub. Co., 1973.
M. B LIDIA , M. C HELLALI , T. W. H AYNES , AND M. A. H ENNING , Independent and double domination in trees, Util. Math., 70(2006), 159–173.
C. C¸ IFTC ¸ I AND A. A YTAC ¸ , Porous exponential domination number of some graphs, Numer. Methods Partial Differential Equations, 37(2021), 1385–1396, https://doi.org/10.1002/num.22585. DOI: https://doi.org/10.1002/num.22585
C. C¸ IFTC ¸ I AND V. A YTAC ¸ , Disjunctive total domination subdivision number of graphs, Fund. Inform.,
(2020), 15–26, https://doi.org/10.3233/FI-2020-1928. DOI: https://doi.org/10.3233/FI-2020-1928
G. C HARTRAND AND L. L ESNIAK , Graphs & digraphs, Boca Raton : Chapman & Hall/CRC, 4 ed., 2005.
M. C HELLALI , A note on the double domination number in trees, AKCE Int. J. Graphs Comb., 3(2006),
–150.
X.- G . C HEN AND L. S UN , Some new results on double domination in graphs, J. Math. Res. Exposition,
(2005), 451–456.
E. J. C OCKAYNE , R. M. D AWES , AND S. T. H EDETNIEMI , Total domination in graphs, Networks, 10(1980),
–219, https://doi.org/10.1002/net.3230100304. DOI: https://doi.org/10.1002/net.3230100304
J. A. G ALLIAN , A dynamic survey of graph labeling, Electron. J. Combin., 17(2014), 60–62.
F. H ARARY AND T. W. H AYNES , Double domination in graphs, Ars Combin., 55(2000), 201–213.
T. H AYNES , D. K NISLEY , E. S EIER , AND Y. Z OU , A quantitative analysis of secondary rna structure using domination based parameters on trees, BMC Bioinform., 7(2006), https://doi.org/10.1186/1471-2105-7-108. DOI: https://doi.org/10.1186/1471-2105-7-108
T. W. H AYNES , S. T. H EDETNIEMI , AND P. J. S LATER , Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.
M. A. H ENNING AND V. N AICKER , Disjunctive total domination in graphs, J. Comb. Optim., 31(2016), 1090–1110, https://doi.org/10.1007/s10878-014-9811-4. DOI: https://doi.org/10.1007/s10878-014-9811-4
Z. K ARTAL Y ILD IZ AND A. A YTAC ¸ , Semitotal domination of some known trees, Bull. Int. Math. Virtual Inst., 11(2021), 147–158.
U. V. C. K UMAR AND R. M URALI , Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2016), 125–130.
C. L. L IU , Introduction to combinatorial mathematics, McGraw-Hill Book Co., New York-Toronto, Ont.-
London, 1968.
B. S OORYANARAYANA , Certain Combinatorial Connections Between Groups, Graphs and Surfaces, PhD
Thesis, 1998.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Aysun Aytaç, Ayşen Mutlu
This work is licensed under a Creative Commons Attribution 4.0 International License.