On Tribonacci functions and Gaussian Tribonacci functions

Downloads

DOI:

https://doi.org/10.26637/mjm11S/013

Abstract

 In this work, Gaussian Tribonacci functions are defined and investigated on the set of real numbers \(\mathbb{R}\), i.e., functions \(f_G: \mathbb{R} \rightarrow \mathbb{C}\) such that for all \(x \in \mathbb{R}, n \in \mathbb{Z}, f_G(x+n)=\) \(f(x+n)+i f(x+n-1)\) where \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a Tribonacci function which is given as \(f(x+3)=\) \(f(x+2)+f(x+1)+f(x)\) for all \(x \in \mathbb{R}\). Then the concept of Gaussian Tribonacci functions by using the concept of \(f\)-even and \(f\)-odd functions is developed. Also, we present linear sum formulas of Gaussian Tribonacci functions. Moreover, it is showed that if \(f_G\) is a Gaussian Tribonacci function with Tribonacci function \(f\), then \(\lim _{x \rightarrow \infty} \frac{f_G(x+1)}{f_G(x)}=\alpha\) and \(\lim _{x \rightarrow \infty} \frac{f_G(x)}{f(x)}=\alpha+i\), where \(\alpha\) is the positive real root of equation \(x^3-x^2-x-1=0\) for which \(\alpha>1\). Finally, matrix formulations of Tribonacci functions and Gaussian Tribonacci functions are given.

In the literature, there are several studies on the functions of linear recurrent sequences such as Fibonacci functions and Tribonacci functions. However, there are no study on Gaussian functions of linear recurrent sequences such as Gaussian Tribonacci and Gaussian Tetranacci functions and they are waiting for the investigating.

We also present linear sum formulas and matrix formulations of Tribonacci functions which have not been studied in the literature.

Keywords:

Tribonacci numbers, Tribonacci functions, Gaussian Tribonacci functions, f-even functions

Mathematics Subject Classification:

28A10
  • Pages: 208-226
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

Arolkar, S., Valaulikar, Y.S., Hyers-Ulam Stability of Generalized Tribonacci Functional Equation, Turkish Journal of Analysis and Number Theory, 2017, 5(3), 80-85, 2017. DOI:10.12691/tjant-5-3-1 DOI: https://doi.org/10.12691/tjant-5-3-1

Elmore, M., Fibonacci Functions. Fibonacci Quarterly, 5(4): 371-382, 1967.

Fergy, J., Rabago, T., On Second-Order Linear Recurrent Functions with Period k and Proofs to two Conjectures of Sroysang, Hacettepe Journal of Mathematics and Statistics, 45(2), 429- 446, 2016. DOI: https://doi.org/10.15672/HJMS.20164512497

Gandhi K. R. R., (2012). Exploration of Fibonacci Function. Bulletin of Mathematical Sciences and Applications, 1(1), 77-84, 2012. DOI: https://doi.org/10.18052/www.scipress.com/BMSA.1.57

Han, J.S., H. S. Kim, Neggers, J., On Fibonacci Functions with Fibonacci Numbers, Advances in Difference Equations, 2012. https://doi.org/10.1186/1687-1847-2012-126 DOI: https://doi.org/10.1186/1687-1847-2012-126

Magnani, K.E., On Third-Order Linear Recurrent Functions, Discrete Dynamics in Nature and Society, Volume 2019, Article ID 9489437, 4 pages. https://doi.org/10.1155/2019/9489437 DOI: https://doi.org/10.1155/2019/9489437

Parizi, M. N., Gordji, M. E., On Tribonacci Functions and Tribonacci Numbers, Int. J. Math. Comput. Sci., 11(1), 23-32, 2016.

Parker, F. D., A Fibonacci Function, Fibonacci Quarterly, 6(1), 1-2, 1968.

Sharma, K. K., On the Extension of Generalized Fibonacci Function, International Journal of Advanced and Applied Sciences, 5(7), 58-63, 2018. DOI: https://doi.org/10.21833/ijaas.2018.07.008

Sharma, K. K., Generalized Tribonacci Function and Tribonacci Numbers, International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1313-1316, 2020. DOI: https://doi.org/10.35940/ijrte.F7640.059120

Sharma, K. K., Panwar, V., On Tetranacci Functions and Tetranacci Numbers, Int. J. Math. Comput. Sci., 15(3), 923-932, 2020.

Spickerman, W. R., A Note on Fibonacci Functions. Fibonacci Quarterly, 8(4), 397-401, 1970.

Sriponpaew, B., Sassanapitax, L.,On k-Step Fibonacci Functions and k-Step Fibonacci Numbers, International Journal of Mathematics and Computer Science, 15(4), 1123-1128, 2020.

Sroysang, B., On Fibonacci Functions with Period k, Discrete Dynamics in Nature and Society, Article ID 418123, 4 pages. 2013. https://doi.org/10.1155/2013/418123 DOI: https://doi.org/10.1155/2013/418123

Soykan, Y. On the Recurrence Properties of Generalized Tribonacci Sequence, Earthline Journal of Mathematical Sciences, 6(2), 253-269, 2021. https://doi.org/10.34198/ejms.6221.253269 DOI: https://doi.org/10.34198/ejms.6221.253269

Soykan, Y., Ta¸ sdemir, E., Okumu¸ s, · I., Göcen, M., Gaussian Generalized Tribonacci Numbers, Journal of Progressive Research in Mathematics(JPRM), 14 (2), 2373-2387, 2018.

Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, Universal Journal of Mathematics and Applications, 3(1), 1-11, 2020. ISSN 2619-9653, DOI: https://doi.org/10.32323/ujma.637876 DOI: https://doi.org/10.32323/ujma.637876

Wolfram, D.A., Solving Generalized Fibonacci Recurrences, Fibonacci Quarterly, 36, 129-145, 1998.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Yüksel Soykan, Melih Göcen, and İnci Okumuş. “On Tribonacci Functions and Gaussian Tribonacci Functions”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 208-26, doi:10.26637/mjm11S/013.