On Tribonacci functions and Gaussian Tribonacci functions
Downloads
DOI:
https://doi.org/10.26637/mjm11S/013Abstract
In this work, Gaussian Tribonacci functions are defined and investigated on the set of real numbers \(\mathbb{R}\), i.e., functions \(f_G: \mathbb{R} \rightarrow \mathbb{C}\) such that for all \(x \in \mathbb{R}, n \in \mathbb{Z}, f_G(x+n)=\) \(f(x+n)+i f(x+n-1)\) where \(f: \mathbb{R} \rightarrow \mathbb{R}\) is a Tribonacci function which is given as \(f(x+3)=\) \(f(x+2)+f(x+1)+f(x)\) for all \(x \in \mathbb{R}\). Then the concept of Gaussian Tribonacci functions by using the concept of \(f\)-even and \(f\)-odd functions is developed. Also, we present linear sum formulas of Gaussian Tribonacci functions. Moreover, it is showed that if \(f_G\) is a Gaussian Tribonacci function with Tribonacci function \(f\), then \(\lim _{x \rightarrow \infty} \frac{f_G(x+1)}{f_G(x)}=\alpha\) and \(\lim _{x \rightarrow \infty} \frac{f_G(x)}{f(x)}=\alpha+i\), where \(\alpha\) is the positive real root of equation \(x^3-x^2-x-1=0\) for which \(\alpha>1\). Finally, matrix formulations of Tribonacci functions and Gaussian Tribonacci functions are given.
In the literature, there are several studies on the functions of linear recurrent sequences such as Fibonacci functions and Tribonacci functions. However, there are no study on Gaussian functions of linear recurrent sequences such as Gaussian Tribonacci and Gaussian Tetranacci functions and they are waiting for the investigating.
We also present linear sum formulas and matrix formulations of Tribonacci functions which have not been studied in the literature.
Keywords:
Tribonacci numbers, Tribonacci functions, Gaussian Tribonacci functions, f-even functionsMathematics Subject Classification:
28A10- Pages: 208-226
- Date Published: 01-10-2023
- Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
Arolkar, S., Valaulikar, Y.S., Hyers-Ulam Stability of Generalized Tribonacci Functional Equation, Turkish Journal of Analysis and Number Theory, 2017, 5(3), 80-85, 2017. DOI:10.12691/tjant-5-3-1 DOI: https://doi.org/10.12691/tjant-5-3-1
Elmore, M., Fibonacci Functions. Fibonacci Quarterly, 5(4): 371-382, 1967.
Fergy, J., Rabago, T., On Second-Order Linear Recurrent Functions with Period k and Proofs to two Conjectures of Sroysang, Hacettepe Journal of Mathematics and Statistics, 45(2), 429- 446, 2016. DOI: https://doi.org/10.15672/HJMS.20164512497
Gandhi K. R. R., (2012). Exploration of Fibonacci Function. Bulletin of Mathematical Sciences and Applications, 1(1), 77-84, 2012. DOI: https://doi.org/10.18052/www.scipress.com/BMSA.1.57
Han, J.S., H. S. Kim, Neggers, J., On Fibonacci Functions with Fibonacci Numbers, Advances in Difference Equations, 2012. https://doi.org/10.1186/1687-1847-2012-126 DOI: https://doi.org/10.1186/1687-1847-2012-126
Magnani, K.E., On Third-Order Linear Recurrent Functions, Discrete Dynamics in Nature and Society, Volume 2019, Article ID 9489437, 4 pages. https://doi.org/10.1155/2019/9489437 DOI: https://doi.org/10.1155/2019/9489437
Parizi, M. N., Gordji, M. E., On Tribonacci Functions and Tribonacci Numbers, Int. J. Math. Comput. Sci., 11(1), 23-32, 2016.
Parker, F. D., A Fibonacci Function, Fibonacci Quarterly, 6(1), 1-2, 1968.
Sharma, K. K., On the Extension of Generalized Fibonacci Function, International Journal of Advanced and Applied Sciences, 5(7), 58-63, 2018. DOI: https://doi.org/10.21833/ijaas.2018.07.008
Sharma, K. K., Generalized Tribonacci Function and Tribonacci Numbers, International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1313-1316, 2020. DOI: https://doi.org/10.35940/ijrte.F7640.059120
Sharma, K. K., Panwar, V., On Tetranacci Functions and Tetranacci Numbers, Int. J. Math. Comput. Sci., 15(3), 923-932, 2020.
Spickerman, W. R., A Note on Fibonacci Functions. Fibonacci Quarterly, 8(4), 397-401, 1970.
Sriponpaew, B., Sassanapitax, L.,On k-Step Fibonacci Functions and k-Step Fibonacci Numbers, International Journal of Mathematics and Computer Science, 15(4), 1123-1128, 2020.
Sroysang, B., On Fibonacci Functions with Period k, Discrete Dynamics in Nature and Society, Article ID 418123, 4 pages. 2013. https://doi.org/10.1155/2013/418123 DOI: https://doi.org/10.1155/2013/418123
Soykan, Y. On the Recurrence Properties of Generalized Tribonacci Sequence, Earthline Journal of Mathematical Sciences, 6(2), 253-269, 2021. https://doi.org/10.34198/ejms.6221.253269 DOI: https://doi.org/10.34198/ejms.6221.253269
Soykan, Y., Ta¸ sdemir, E., Okumu¸ s, · I., Göcen, M., Gaussian Generalized Tribonacci Numbers, Journal of Progressive Research in Mathematics(JPRM), 14 (2), 2373-2387, 2018.
Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, Universal Journal of Mathematics and Applications, 3(1), 1-11, 2020. ISSN 2619-9653, DOI: https://doi.org/10.32323/ujma.637876 DOI: https://doi.org/10.32323/ujma.637876
Wolfram, D.A., Solving Generalized Fibonacci Recurrences, Fibonacci Quarterly, 36, 129-145, 1998.
- NA
Similar Articles
- TIMOTHY OLOYEDE OPOOLA, EZEKIEL ABIODUN OYEKAN, SEYI DEBORAH OLUWASEGUN, PETER OLUWAFEMI ADEPOJU, New subfamilies of univalent functions defined by Opoola differential operator and connected with modified Sigmoid function , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yüksel Soykan, Melih Göcen, İnci Okumuş
This work is licensed under a Creative Commons Attribution 4.0 International License.