Weighted pseudo \(S\)-asymptotically Bloch type periodic solutions for a class of mean field stochastic fractional evolution equations

Downloads

DOI:

https://doi.org/10.26637/mjm1104/005

Abstract

This paper concerns a class of mean-field stochastic fractional evolution equations. Initially, we establish some auxiliary results for weighted pseudo \(S\)-asymptotically Bloch type periodic stochastic processes. Without a compactness assumption on the resolvent operator and some additional conditions on forced terms, the existence and uniqueness of weighted pseudo \(S\)-asymptotically Bloch type periodic mild solutions on the real line of the referred equation are obtained. In addition, we show the existence of weighted pseudo \(S\)-asymptotically Bloch type periodic mild solutions with sublinear growth assumptions on the drift term and compactness conditions. Finally, an example is provided to verify the main outcomes.

Keywords:

Stochastic processes, stochastic fractional evolution equations, asymptotically Bloch type periodicity, Brownian motion, distribution, Mean field

Mathematics Subject Classification:

30D45, 34C25, 60H15, 60G22
  • Mamadou Moustapha Mbaye D´ epartement de Math´ ematiques, Facult´ e des Sciences et Technique, Universit´ e Cheikh Anta Diop, BP-5005, Dakar-Fann, Senegal https://orcid.org/0009-0005-3011-5129
  • Amadou Diop Laboratory of Numerical Analysis and Computer Science, Applied Mathematics Section, Gaston Berger University , Saint-Louis, Senegal.
  • Moustapha Dieye ´ Ecole Polytechnique de Thi´ es, D´ epartement Tronc commun, Thi´ es BP A10, S´ en´ egal.
  • Pages: 378-402
  • Date Published: 01-10-2023
  • Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)

{1] A. Granas and J. Dugundji , Fixed point theory, New York , Springer, 2003. DOI: https://doi.org/10.1007/978-0-387-21593-8

A. G. Bhatt, G. Kallianpur, R. L Karandikar and J. Xiong , On hilbert-space-valued diffusions, Appl. Math. Optim., 37(2)(1998), 151–188. DOI: https://doi.org/10.1007/s002459900072

A. S. Sznitman , Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated, J. Funct. Anal., 56(3)(1984), 311–336. DOI: https://doi.org/10.1016/0022-1236(84)90080-6

A. S. Sznitman , Topics in Propagation of Chaos. ´ ecole D’´ et´ e de Probabilit´ es de Saint-Flour XIX-1989., 165–251, Lecture Notes in Math., 1464, Springer, Berlin, 1991. DOI: https://doi.org/10.1007/BFb0085169

A. Diop, M. M. Mbaye, G. M. N’Guérékata and Y. K. Chang , On square-mean S-asymptotically Bloch type periodicity of some stochastic evolution equations, Analele Universit˘ at ¸ii Oradea Fasc. Matematica, to appear.

C. Lizama and G. M. N’Guérékata , Bounded mild solutions for semilinear integro-differential equations in Banach spaces, Integral Equ. Oper. Theory, 68(2010), 207–227. DOI: https://doi.org/10.1007/s00020-010-1799-2

D. A. Dawson , Critical dynamics and fluctuations for a mean-field model of cooperative behavior, J. Stat. Phys., 31(1)(1983), 29–85. DOI: https://doi.org/10.1007/BF01010922

E. Alvarez, C. Lizama and R. Ponce , Weighted pseudo antiperiodic solutions for fractional integro-differential equations in Banach spaces, Appl. Math. Comput., 259(2015), 164–172. DOI: https://doi.org/10.1016/j.amc.2015.02.047

E. Alvarez, A. Gómez and M. Pinto , (ω,c)-Periodic functions and mild solution to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., 16(2018), 1–8. DOI: https://doi.org/10.14232/ejqtde.2018.1.16

F. Bloch Uberdie quanten mechanik der elektronen in kristall gittern, Z. Phys., 52(1929), 555–600. DOI: https://doi.org/10.1007/BF01339455

G. Kallianpur and J. Xiong , Stochastic Differential Equations in Infinite Dimensional Spaces, Hayward, CA: Institute of Mathematical Statistics, 1995. DOI: https://doi.org/10.1214/lnms/1215451864

H. R. Henr´ıquez and C. Lizama , Compact almost automorphic solutions to integral equations with infinite delay, Nonlinear Anal., 71(12)(2009), 6029–6037. DOI: https://doi.org/10.1016/j.na.2009.05.042

H. P. McKean jr , A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl .Acad. Sci. USA, 56(6)(1966), 1907–1911. DOI: https://doi.org/10.1073/pnas.56.6.1907

N. U. Ahmed and X.Ding , A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, Stochastic Process. Appl., 60(1)(1995), 65–85. DOI: https://doi.org/10.1016/0304-4149(95)00050-X

N. U. Ahmed , A general class of McKean-Vlasov stochastic evolution equations driven by Brownian motion and Levy process and controlled by L´ evy measure, Discuss. Math. Differ. Incl. Control Optim., 36(2)(2016), 181–206. DOI: https://doi.org/10.7151/dmdico.1186

M. Dieye, A. Diop, M. M. Mbaye and M. McKibben . On weighted pseudo almost automorphic mild solutions for some mean field stochastic evolution equations; 2022. arXiv:2208.06076.

M. Kac , Foundations of kinetic theory, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. III, University of California Press, 1954–1955, pp. 171–197.

M. Kosti´ c and D. Velinov , Asymptotically Bloch-periodic solutions of abstract fractional nonlinear differential inclusions with piecewise constant argument, Funct. Anal. Approx. Comput., 9(2017), 27–36.

M. F. Hasler and G. M. N’Guérékata , Bloch-periodic functions and some applications, Nonlinear Stud., 21(2014), 21–30.

M. Pierri and D. O’Regan , S-asymptotically ω-periodic solutions for abstract neutral differential equations, Electron. J. Diff. Equ., 210(2015), 1–14.

N. I. Mahmudov and M. A. McKibben, McKean-Vlasov stochastic differential equations in Hilbert spaces under Carath´ edory conditions, Dynam. Syst. Appl., 15(2016), 357–374.

N. I. Mahmudov and M. A. McKibben , Abstract second-order damped McKean-Vlasov stochastic evolution equations, Stoch. Anal. Appl.,24(2)(2006), 303–328. DOI: https://doi.org/10.1080/07362990500522247

R. Ponce , Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett., 105(2020), 106322. DOI: https://doi.org/10.1016/j.aml.2020.106322

R. Ponce , Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87(2013), 377–392. DOI: https://doi.org/10.1007/s00233-013-9474-y

R. Carmona and F. Delarue , Probabilistic theoric of mean fied games with applications. I. Mean field FBSDEs, control, and games. Probability Theory and Stochastic Modelling, 83, Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-58920-6

S. Abbas, M. Benchohra and G. M. N’Guérékata , Topics in Fractional Differential Equations, Springer, New York, 2012. DOI: https://doi.org/10.1007/978-1-4614-4036-9

S. Zhao and M. Song , Square-mean S-asymptotically ω-periodic solutions for a Stochastic fractional evolution equation driven by Levy noise with piecewise constant argument, arXiv : 1609.01444v1 [math.DS]. (2016).

S. Zhao and M. Song , S-asymptotically ω-periodic solutions in distribution for a class of Stochastic fractional functional differential equations, arXiv : 1609.01453v1 [math.DS]. (2016).

T. Morozan and C. Tudor , (1989).Almost periodic solutions of affine Itô equations, Stoch. Anal.Appl., 7(4)(1989), 451–474. DOI: https://doi.org/10.1080/07362998908809194

W. E, H. Shen , Mean field limit of a dynamical model of polymer systems, Sci. China Math., 56(12)(2013), 2591–2598. DOI: https://doi.org/10.1007/s11425-013-4713-y

Y. K. Chang and Y. Wei , S-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Math. Sci. Ser., 41B(2021), 413–425. DOI: https://doi.org/10.1007/s10473-021-0206-1

Y. K. Chang and Y. Wei , Pseudo S-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40(2021), 33–50. DOI: https://doi.org/10.4171/ZAA/1671

Y. K. Chang and J. Zhao , Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., (2021). DOI: https://doi.org/10.1515/ijnsns-2021-0251

Y. K. Chang, G. M. N’Guérékata and R. Ponce , Bloch-type Periodic Functions: Theory and Applications to Evolution Equations, World Scientific, NY, 2022. DOI: https://doi.org/10.1142/12780

Y. K. Chang, Y. Wei , Pseudo S-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms, Z. Angew. Math. Phys., 73 (2022), Art. 77, 17pp DOI: https://doi.org/10.1007/s00033-022-01722-y

Y. K. Chang and J. Zhao , Pseudo S-asymptotically (ω,c)-periodic solutions to some evolution equations in Banach spaces, Banach J. Math. Anal., 17(34)(2023). DOI: https://doi.org/10.1007/s43037-023-00260-7

Y.K. Chang and R. Ponce , Uniform exponential stability and its applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equ. Appl., 30(2018), 347–369. DOI: https://doi.org/10.1216/JIE-2018-30-3-347

Z. N. Xia , Weighted pseudo asymptotically periodic mild solutions of evolution equations, Acta Math. Sin., 31(2015), 1215–1232. DOI: https://doi.org/10.1007/s10114-015-4727-1

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Mamadou Moustapha Mbaye, Amadou Diop, and Moustapha Dieye. “Weighted Pseudo \(S\)-Asymptotically Bloch Type Periodic Solutions for a Class of Mean Field Stochastic Fractional Evolution Equations”. Malaya Journal of Matematik, vol. 11, no. 04, Oct. 2023, pp. 378-02, doi:10.26637/mjm1104/005.