Generalized Hyers-Ulam stability of a 3D additive-quadratic functional equation in Banach spaces: A study with counterexamples
Downloads
DOI:
https://doi.org/10.26637/mjm1104/007Abstract
In this research, we focus on solving a mixed type additive-quadratic functional equation expressed as:
\begin{align*}
&h(3s_1+2s_2+s_3) + h(3s_1+2s_2-s_3) + h(3s_1-2s_2+s_3)\\+&h(3s_1-2s_2-s_3)=12\tilde{h}(s_1) +8\tilde{h}(s_2)+2\tilde{h}(s_3)+12h(s_1)
\end{align*}
where \(\tilde{h}(s_1)=h(s_1)+h(-s_1)\) is derived. We proceed to investigate the generalized Hyers-Ulam stability of this equation within the framework of Banach spaces, employing the Hyers direct method. Additionally, examples of non-stable cases are also provided.
Keywords:
Additive-Quadratic functional equations, Direct method, Generalized Hyers-Ulam stability, Ulam stability, Banach spaceMathematics Subject Classification:
39B52, 39B72, 39B82- Pages: 417-446
- Date Published: 01-10-2023
- Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)
J. A CZEL AND J. D HOMBRES , Functional Equations in Several Variables, Cambridge Univ. Press, (1989). DOI: https://doi.org/10.1017/CBO9781139086578
T. A OKI , On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1-2)(1950), DOI: https://doi.org/10.2969/jmsj/00210064
-66.
M. A RUNKUMAR , M ATINA J. R ASSIAS , Y ANHUI Z HANG , Ulam - Hyers stability of a 2- variable AC - mixed
type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF),
(3)(2012), 10-26.
M. A RUNKUMAR , P. N ARASIMMAN , E. S ATHYA , N. M AHESH K UMAR , 3 Dimensional Additive Quadratic
Functional Equation, Malaya J. Mat., 5(1)(2017), 72-106. DOI: https://doi.org/10.26637/mjm501/008
K. B ALAMURUGAN , M. A RUNKUMAR , P. R AVINDIRAN , Stability of a Cubic and Orthogonally Cubic
Functional Equations, International Journal of Applied Engineering Research(IJAER), 10(72)(2015), 1-7.
P. W. C HOLEWA , Remarks on the stability of functional equations, Aeq. Math., 27(1)(1984), 76–86. DOI: https://doi.org/10.1007/BF02192660
S. C ZERWIK , On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg.,
(1)(1992), 59–64.
S. C ZERWIK , Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ,
(2002).
M. E SHAGHI G ORDJI , H. K HODAEI , J.M. R ASSIAS , Fixed point methods for the stability of general quadratic
functional equation, Fixed Point Theory, 12(1)(2011), 71-82.
Z. G AJDA , On stability of additive mappings , Int. J. Math. Math. Sci., 14(3)(1991), 431-434. DOI: https://doi.org/10.1155/S016117129100056X
P. G AVRUTA , A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J.
Math. Anal. Appl., 184(1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
D.H. H YERS , On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27(1941) 222- DOI: https://doi.org/10.1073/pnas.27.4.222
D.H. H YERS , G. I SAC , T H .M. R ASSIAS , Stability of functional equations in several variables, Birkhauser,
Basel, (1998).
K.-W. J UN AND H.-M. K IM , On the Hyers-Ulam tability of a Generalized Quadratic and Additive functional
equation, Bull. Korean Math. Soc., 42(1)(2001), 133-148.
S.-M. J UNG , On the Hyers-Ulam stability of the functional equations that have the quadratic property, J.
Math. Anal. Appl., 222(1)(1998), 126–137
S.M. J UNG , Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Palm Harbor, (2001).
P L . K ANNAPPAN , Quadratic functional equation and inner product spaces, Results Math., 27(3)(1995), 368–372. DOI: https://doi.org/10.1007/BF03322841
P L . K ANNAPPAN , Functional Equations and Inequalities with Applications, Springer Monographs in
Mathematics, (2009).
H. K HODAEI AND T. M. R ASSIAS , Approximately generalized additive functions in several variables, Results
Math., 1(2010), 22–41. DOI: https://doi.org/10.1111/j.1440-1630.1975.tb01702.x
S. M URTHY , M. A RUNKUMAR , G. G ANAPATHY , Perturbation of n- dimensional quadratic functional equation:
A fixed point approach, International Journal of Advanced Computer Research (IJACR), 3(3)(11)(2013), 271-276.
A. N ATAJI AND M. B. M OGHIMI , Stability of a functional equation deriving from quadratic and additive
functions in quasi-Banach spaces, J. Math. Anal. Appl., 337(1)(2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104
J.M. R ASSIAS , On approximately of approximately linear mappings by linear mappings, J. Funct. Anal.
USA, 46(1982) 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
T H .M. R ASSIAS , On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
-300.
T H .M. R ASSIAS , On the stability of functional equations and a problem of Ulam, Acta Appl. Math.,
(1)(2000), 297-300.
T H .M. R ASSIAS , Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers,
Dordrecht, Bostan London, (2003).
K.R AVI AND M.A RUNKUMAR , On a n- dimensional additive Functional Equation with fixed point Alternative,
Proceedings of International Conference on Mathematical Sciences, Malaysia, (2007).
K. R AVI , M. A RUNKUMAR AND J.M. R ASSIAS , On the Ulam stability for the orthogonally general Euler-
Lagrange type functional equation, International Journal of Mathematical Sciences, 3(8)(2008), 36-47.
F. S KOF , Local properties and approximation of operators, F. Seminario Mat. e. Fis. di Milano, 53 (1) (1983), DOI: https://doi.org/10.1007/BF02924890
–129.
K. T AMILVANAN , J. R. L EE , AND C. P ARK , Ulam stability of a functional equation deriving from quadratic
and additive mappings in random normed spaces, AIMS Mathematics, 6(1)(2021), 908–924. DOI: https://doi.org/10.3934/math.2021054
S.M. U LAM , Problems in Modern Mathematics, Science Editions, Wiley, NewYork, (1964).
- NA
Similar Articles
- R. Uthayakumar, A. Ruba Priyadharshini, Optimal strategy on inventory model under permissible delay in payments and return policy for deteriorating items with shortages , Malaya Journal of Matematik: Vol. 12 No. 01 (2024): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. Yagachitradevi, S. Lakshminarayanan, P. Ravindiran
This work is licensed under a Creative Commons Attribution 4.0 International License.