Generalized Hyers-Ulam stability of a 3D additive-quadratic functional equation in Banach spaces: A study with counterexamples

Downloads

DOI:

https://doi.org/10.26637/mjm1104/007

Abstract

In this research, we focus on solving a mixed type additive-quadratic functional equation expressed as:
\begin{align*}
&h(3s_1+2s_2+s_3) + h(3s_1+2s_2-s_3) + h(3s_1-2s_2+s_3)\\+&h(3s_1-2s_2-s_3)=12\tilde{h}(s_1) +8\tilde{h}(s_2)+2\tilde{h}(s_3)+12h(s_1)
\end{align*}
where \(\tilde{h}(s_1)=h(s_1)+h(-s_1)\) is derived. We proceed to investigate the generalized Hyers-Ulam stability of this equation within the framework of Banach spaces, employing the Hyers direct method. Additionally, examples of non-stable cases are also provided.

Keywords:

Additive-Quadratic functional equations, Direct method, Generalized Hyers-Ulam stability, Ulam stability, Banach space

Mathematics Subject Classification:

39B52, 39B72, 39B82
  • G. Yagachitradevi Department of Mathematics, Siga College of Management and Computer Science, Villupuram - 605601, Tamil Nadu, India.
  • S. Lakshminarayanan Department of Mathematics, Arignar Anna Government Arts College, Villupuram - 605 602, Tamil Nadu, India.
  • P. Ravindiran Department of Mathematics, Arignar Anna Government Arts College, Villupuram - 605 602, Tamil Nadu, India.
  • Pages: 417-446
  • Date Published: 01-10-2023
  • Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)

J. A CZEL AND J. D HOMBRES , Functional Equations in Several Variables, Cambridge Univ. Press, (1989). DOI: https://doi.org/10.1017/CBO9781139086578

T. A OKI , On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1-2)(1950), DOI: https://doi.org/10.2969/jmsj/00210064

-66.

M. A RUNKUMAR , M ATINA J. R ASSIAS , Y ANHUI Z HANG , Ulam - Hyers stability of a 2- variable AC - mixed

type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF),

(3)(2012), 10-26.

M. A RUNKUMAR , P. N ARASIMMAN , E. S ATHYA , N. M AHESH K UMAR , 3 Dimensional Additive Quadratic

Functional Equation, Malaya J. Mat., 5(1)(2017), 72-106. DOI: https://doi.org/10.26637/mjm501/008

K. B ALAMURUGAN , M. A RUNKUMAR , P. R AVINDIRAN , Stability of a Cubic and Orthogonally Cubic

Functional Equations, International Journal of Applied Engineering Research(IJAER), 10(72)(2015), 1-7.

P. W. C HOLEWA , Remarks on the stability of functional equations, Aeq. Math., 27(1)(1984), 76–86. DOI: https://doi.org/10.1007/BF02192660

S. C ZERWIK , On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg.,

(1)(1992), 59–64.

S. C ZERWIK , Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ,

(2002).

M. E SHAGHI G ORDJI , H. K HODAEI , J.M. R ASSIAS , Fixed point methods for the stability of general quadratic

functional equation, Fixed Point Theory, 12(1)(2011), 71-82.

Z. G AJDA , On stability of additive mappings , Int. J. Math. Math. Sci., 14(3)(1991), 431-434. DOI: https://doi.org/10.1155/S016117129100056X

P. G AVRUTA , A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J.

Math. Anal. Appl., 184(1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

D.H. H YERS , On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27(1941) 222- DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. H YERS , G. I SAC , T H .M. R ASSIAS , Stability of functional equations in several variables, Birkhauser,

Basel, (1998).

K.-W. J UN AND H.-M. K IM , On the Hyers-Ulam tability of a Generalized Quadratic and Additive functional

equation, Bull. Korean Math. Soc., 42(1)(2001), 133-148.

S.-M. J UNG , On the Hyers-Ulam stability of the functional equations that have the quadratic property, J.

Math. Anal. Appl., 222(1)(1998), 126–137

S.M. J UNG , Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic

Press, Palm Harbor, (2001).

P L . K ANNAPPAN , Quadratic functional equation and inner product spaces, Results Math., 27(3)(1995), 368–372. DOI: https://doi.org/10.1007/BF03322841

P L . K ANNAPPAN , Functional Equations and Inequalities with Applications, Springer Monographs in

Mathematics, (2009).

H. K HODAEI AND T. M. R ASSIAS , Approximately generalized additive functions in several variables, Results

Math., 1(2010), 22–41. DOI: https://doi.org/10.1111/j.1440-1630.1975.tb01702.x

S. M URTHY , M. A RUNKUMAR , G. G ANAPATHY , Perturbation of n- dimensional quadratic functional equation:

A fixed point approach, International Journal of Advanced Computer Research (IJACR), 3(3)(11)(2013), 271-276.

A. N ATAJI AND M. B. M OGHIMI , Stability of a functional equation deriving from quadratic and additive

functions in quasi-Banach spaces, J. Math. Anal. Appl., 337(1)(2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104

J.M. R ASSIAS , On approximately of approximately linear mappings by linear mappings, J. Funct. Anal.

USA, 46(1982) 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

T H .M. R ASSIAS , On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

-300.

T H .M. R ASSIAS , On the stability of functional equations and a problem of Ulam, Acta Appl. Math.,

(1)(2000), 297-300.

T H .M. R ASSIAS , Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers,

Dordrecht, Bostan London, (2003).

K.R AVI AND M.A RUNKUMAR , On a n- dimensional additive Functional Equation with fixed point Alternative,

Proceedings of International Conference on Mathematical Sciences, Malaysia, (2007).

K. R AVI , M. A RUNKUMAR AND J.M. R ASSIAS , On the Ulam stability for the orthogonally general Euler-

Lagrange type functional equation, International Journal of Mathematical Sciences, 3(8)(2008), 36-47.

F. S KOF , Local properties and approximation of operators, F. Seminario Mat. e. Fis. di Milano, 53 (1) (1983), DOI: https://doi.org/10.1007/BF02924890

–129.

K. T AMILVANAN , J. R. L EE , AND C. P ARK , Ulam stability of a functional equation deriving from quadratic

and additive mappings in random normed spaces, AIMS Mathematics, 6(1)(2021), 908–924. DOI: https://doi.org/10.3934/math.2021054

S.M. U LAM , Problems in Modern Mathematics, Science Editions, Wiley, NewYork, (1964).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

G. Yagachitradevi, S. Lakshminarayanan, and P. Ravindiran. “Generalized Hyers-Ulam Stability of a 3D Additive-Quadratic Functional Equation in Banach Spaces: A Study With Counterexamples”. Malaya Journal of Matematik, vol. 11, no. 04, Oct. 2023, pp. 417-46, doi:10.26637/mjm1104/007.