On existence of extremal integrable solutions and integral inequalities for nonlinear Volterra type integral equations

Downloads

DOI:

https://doi.org/10.26637/mjm1203/002

Abstract

We prove the existence of maximal and minimal integrable solutions of nonlinear Volterra type integral equations. Two basic integral inequalities are obtained in the form of extremal integrable solutions which are further exploited for proving the boundedness and uniqueness of the integrable solutions of the considered integral equation.

Keywords:

Volterra integral equation; Tarski fixed point principle; Extremal integrable solutions; integral inequalities.

Mathematics Subject Classification:

47H10, 35A35
  • Bapurao Dhage Kasubai, Gurukul Colony, Thodga Road, Ahmedpur-413 515, Dist. Latur, Maharashtra, India
  • Janhavi Dhage Kasubai, Gurukul Colony, Ahmedpur-413 515 , India
  • Shyam Dhage Kasubai, Gurukul Colony, Ahmedpur-413 515 , India
  • Pages: 245-252
  • Date Published: 01-07-2024
  • Vol. 12 No. 03 (2024): Malaya Journal of Matematik (MJM)

J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc.

(series A), 46 (1969), 61-68.

J. Banas, W. G. El-Sayed, Solvability of Functional and Integral Equations in Some Classes of Integrable

Functions, Politechnika Rzeszowska, Rzeszow, Poland, 1993.

G. Birkho , Lattice Theory, Amer. Math. Soc. Coll. Publ. New York, 1967.

A.C. Davis, A characterization of complete lattices, Paci c J. Math., 5 (1965), 311-319.

B.C. Dhage, An extension of lattice xd point theorem and its applications, Pure Appl. Math. Sci, 25

(1987), 37-42.

B. C. Dhage, Existence of extremal solutions for discontinuous functional integral equations, Appl. Math.

Lett., 19 (2006), 881-886.

B.C. Dhage, Nonlinear quadratic rst order functional integro-di erential equations with perioic bound-

ary conditions, Dynamic Systems Appl., 18 (2009), 303-322.

B. C. Dhage, Some variants of two basic hybrid xed point theorems of Krasnoselskii and Dhage with

applications, Nonlinear Studies, 25 92018), 559-573.

B.C. Dhage, On weak di erential inequalities for nonlinear discontinuous boundary value problems and

Applications, Di . Equ. & Dynamical Systems, 7 (1) (1999), 39-47.

J.B. Dhage, S.B. Dhage, B.C. Dhage, C.S. Goodrich, Approximation, existence and uniqueness of the

integrable local solution of nonlinear Volterra type hybrid integral equations, (Submitted)

B.C. Dhage, G.P. Patil, On di erential inequalities for discontinuous non-linear two point boundary

value problems, Di . Equ. Dynamical Systems, 6 (4) (1998), 405-412.

G. Emmanuel, Integrable solutions of a functional-integral equations, J. Integral Equ. Appl., 4 (1)

(1992), 89-94.

D. Gua, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York,

London, 1988.

A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, New York, 2003.

V. Lakshmikantham, S. Leela, Di erential and Integral Inequalities, Academic Press, New York, 1969.

A. Tarski, A lattice theoretical xed point theorem and its applications, Paci c J. Math., 5 (1965),

-309.

  • NA

Metrics

PDF views
174
Jul 01 '24Jul 04 '24Jul 07 '24Jul 10 '24Jul 13 '24Jul 16 '24Jul 19 '24Jul 22 '24Jul 25 '24Jul 28 '2413
|

Published

01-07-2024

How to Cite

Dhage, B., J. Dhage, and S. Dhage. “On Existence of Extremal Integrable Solutions and Integral Inequalities for Nonlinear Volterra Type Integral Equations”. Malaya Journal of Matematik, vol. 12, no. 03, July 2024, pp. 245-52, doi:10.26637/mjm1203/002.