On existence of extremal integrable solutions and integral inequalities for nonlinear Volterra type integral equations
Downloads
DOI:
https://doi.org/10.26637/mjm1203/002Abstract
We prove the existence of maximal and minimal integrable solutions of nonlinear Volterra type integral equations. Two basic integral inequalities are obtained in the form of extremal integrable solutions which are further exploited for proving the boundedness and uniqueness of the integrable solutions of the considered integral equation.
Keywords:
Volterra integral equation; Tarski fixed point principle; Extremal integrable solutions; integral inequalities.Mathematics Subject Classification:
47H10, 35A35- Pages: 245-252
- Date Published: 01-07-2024
- Vol. 12 No. 03 (2024): Malaya Journal of Matematik (MJM)
J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc.
(series A), 46 (1969), 61-68.
J. Banas, W. G. El-Sayed, Solvability of Functional and Integral Equations in Some Classes of Integrable
Functions, Politechnika Rzeszowska, Rzeszow, Poland, 1993.
G. Birkho , Lattice Theory, Amer. Math. Soc. Coll. Publ. New York, 1967.
A.C. Davis, A characterization of complete lattices, Paci c J. Math., 5 (1965), 311-319.
B.C. Dhage, An extension of lattice xd point theorem and its applications, Pure Appl. Math. Sci, 25
(1987), 37-42.
B. C. Dhage, Existence of extremal solutions for discontinuous functional integral equations, Appl. Math.
Lett., 19 (2006), 881-886.
B.C. Dhage, Nonlinear quadratic rst order functional integro-di erential equations with perioic bound-
ary conditions, Dynamic Systems Appl., 18 (2009), 303-322.
B. C. Dhage, Some variants of two basic hybrid xed point theorems of Krasnoselskii and Dhage with
applications, Nonlinear Studies, 25 92018), 559-573.
B.C. Dhage, On weak di erential inequalities for nonlinear discontinuous boundary value problems and
Applications, Di . Equ. & Dynamical Systems, 7 (1) (1999), 39-47.
J.B. Dhage, S.B. Dhage, B.C. Dhage, C.S. Goodrich, Approximation, existence and uniqueness of the
integrable local solution of nonlinear Volterra type hybrid integral equations, (Submitted)
B.C. Dhage, G.P. Patil, On di erential inequalities for discontinuous non-linear two point boundary
value problems, Di . Equ. Dynamical Systems, 6 (4) (1998), 405-412.
G. Emmanuel, Integrable solutions of a functional-integral equations, J. Integral Equ. Appl., 4 (1)
(1992), 89-94.
D. Gua, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York,
London, 1988.
A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, New York, 2003.
V. Lakshmikantham, S. Leela, Di erential and Integral Inequalities, Academic Press, New York, 1969.
A. Tarski, A lattice theoretical xed point theorem and its applications, Paci c J. Math., 5 (1965),
-309.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bapurao Dhage, Janhavi Dhage, Shyam Dhage
This work is licensed under a Creative Commons Attribution 4.0 International License.