Isolate restrained domination in graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0901/0211

Abstract

A dominating set \(D\) of a graph \(G\) is said to be a restrained dominating set (RDS) of \(G\) if every vertex of \(V-D\) has a neighbor in \(V-D\).  A RDS is said to be an isolate restrained dominating set(IRDS) if \(<D>\) has at least one isolated vertex.


The minimum cardinality of a minimal IRDS of \(G\) is called the isolate restrained domination number(IRDN), denoted by \(\gamma_{r,0}(G)\). This paper contains basic properties of IRDS and gives the IRDN for the families of graphs such as paths, cycles, complete \(k\)-partite graphs and some other graphs.

Keywords:

Restrained domination, isolate domination, isolate domination number

Mathematics Subject Classification:

Mathematics
  • S. Palaniammal Department of Mathematics, Sri Krishna Adithya College of Arts and Science, Coimbatore-641042, Tamil Nadu, India.
  • B. Kalins Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore- 641008, Tamil Nadu, India
  • Pages: 1221-1224
  • Date Published: 25-03-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

B.H. Arriola, Isolate domination in the join and corona of graphs, Applied Mathematical Sciences, 9 (2015), 15431549. DOI: https://doi.org/10.12988/ams.2015.512

G.Chartrand, Lesniak, Graphs and Digraphs, Fourth ed., CRC press, Boca Raton, 2005.

E.J.Cockayne, S.T.Hedetniemi, D.J.Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull., 21 (1978) 461-468. DOI: https://doi.org/10.4153/CMB-1978-079-5

Gayla S. Domke, Johannes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R. Markus, Restrained domination in graphs, Disc. Math., 203 (1999), 61-69. DOI: https://doi.org/10.1016/S0012-365X(99)00016-3

T.W.Haynes, S.T. Hedetniemi, P.J.Slater, Fundamental of Domination in Graphs, Marcel Dekker, New York, 1998. DOI: https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F

I.Sahul Hamid, S.Balamurugan, Isolate domination in Unicycle Graphs, International Journal of Mathematics and Soft Computing, 3 (2013), 79-83. DOI: https://doi.org/10.26708/IJMSC.2013.3.3.11

I.Sahul Hamid, S.Balamurugan, Isolate domination in graphs, Arab. J Math Sci., 22 (2016), 232-241. DOI: https://doi.org/10.1016/j.ajmsc.2015.10.001

  • NA

Metrics

Metrics Loading ...

Published

25-03-2021

How to Cite

S. Palaniammal, and B. Kalins. “Isolate Restrained Domination in Graphs”. Malaya Journal of Matematik, vol. 9, no. 01, Mar. 2021, pp. 1221-4, doi:10.26637/MJM0901/0211.