Combined impact of variable internal heat source and variable viscosity on the onset of convective motion in a porous layer
Downloads
DOI:
https://doi.org/10.26637/MJM0803/0042Abstract
The qualitative effect of variable internal heat source and temperature dependence of fluid viscosity on the onset of convection in a horizontal fluid saturated porous layer is investigated using linear stability analysis. The temperature-dependence of viscosity is considered to be exponential. A parametric study is performed out by varying the following parameters: viscosity parameter \((\mathrm{B})\) and internal heat source parameter \((N s)\). We addressed four cases of variance in the internal heat source : (i) \(N(z)=z\), (ii) \(N(z)=z^2\), (iii) \(N(z)=z^3\) and (iv) \(N(z)=e^z\). Results indicate that for both parameters of the factor viscosity and heat source variance are to delay the beginning of convective moment. It seen that the system is to be more unstable for case (iii), while more stable for case (iv).
Keywords:
Variable viscosity, Variable internal heat source, Stability, Rayleigh Benard convectionMathematics Subject Classification:
Mathematics- Pages: 973-976
- Date Published: 01-07-2020
- Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
D.A. Nield, A. Bejan, Convection in Porous Media, third ed., Springer, New York, 2006.
D.A. Nield, A.V. Kuznetsov, The effect of vertical throughflow on the onset of convection in a porous medium in a rectangular box, Transp. Porous. Media. 90(3) (2011), 993-1000.
D. Nield, Onset of thermohaline convection in a porous medium, Water. Resour. Res. 4(3) (1968), 553-560.
D. Nield, Onset of convection in a fluid layer overlying a layer of a porous medium, J. Fluid. Mech. 81(3) (1977), 513-522.
K. Vafai, Handbook of Porous Media, Crc Press, 2015.
S. Wang, W. Tan, Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below, Phys. Lett. A, 372(17) (2008), 3046-3050.
M. Celli, A. Barletta, D. Rees, Local thermal nonequilibrium analysis of the instability in a vertical porous slab with permeable sidewalls, Transp. Porous. Media. 119 (3) (2017), 539-553.
D.B. Ingham, I. Pop, Transport Phenomena in Porous Media, Elsevier, 1998.
R. Gasser, M. Kazimi, Onset of convection in a porous medium with internal heat generation, J. Heat. Transf. 98(1) (1976), 49-54.
N. Banu, D. Rees, Onset of Darcy-Benard convection using a thermal non-equilibrium model, Int. J. Heat. Mass. Transf., 45(11) (2002), 2221-2228.
A. Mahajan, M.K. Sharma, Penetrative convection in magnetic nanofluids via internal heating, Phys. Fluids. 29(3) (2017), 034101.
H. T. Rossby, A Study of Bénard Convection with and Without Rotation, J. Fluid. Mech. 36(2) (1969), 309-335.
K. E. Torrance, and D. L. Turcotte, Thermal Convection with Large Viscosity Variations, J. Fluid. Mech. 47(1) (1979), 113-125.
J. R. Booker, Thermal convection with strongly temperature-dependent viscosity, J. Fluid. Mech. 76(1976), 741-54.
V. S. Solomatov, A. C. Barr, Onset of convection in fluids with strongly temperature-dependent, power-law viscosity. Phys. Earth Planet. Int. 155(2006), 140-145.
A. Barletta and D. A. Nield, Variable viscosity effects on the dissipation nstability in a porous layer with horizontal hroughflow, Physics of Fluids, 24(2012), 1041-1052.
S.H. Davis, The stability of time periodic flows, Ann. Rew. Fluid Mech. 8(1976), 57-74.
N. Rudraiah, M.S. Malashetty, Effect of modulation on the onset of convection in a sparsely packed porous layer, ASME J. Heat. Transfer. 122(1990), 685-689.
P. Gresho, R.L. Sani, The effect of gravity modulation on the stability of a heated fluid layer, J. Fluid. Mech. 40(1970), 783-806.
M.S. Malashetty, V. Padmavathi, Effect of gravity modulation on the onset of convection in a fluid and porous layer, Int. J. Eng. Sci. 35(1997), 829-839.
S.H. Davis, On the principle of exchange of stabilities, Proc. R. Soc. London A. 310(1969), 341-358.
B.A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, 1972.
D.D. Joseph, C.C. Shir, Subcritical convective instability, Part 1. Fluid layers, J. Fluid Mech. 26(1966), 753-768.
D.D. Joseph, Stability of Fluid Motions-II, Springer, Berlin, 1976.
- NA
Similar Articles
- S. Palaniammal , B. Kalins, Isolate restrained domination in graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.