Stochastic delayed fractional-order differential equations driven by fractional Brownian motion

Downloads

DOI:

https://doi.org/10.26637/mjm1003/001

Abstract

In this paper, we presents results on existence and uniqueness of mild solutions to stochastic differential equations with time delay driven by fractional Brownian motion (fBM) with Hurst index (1/2,1) in a Hilbert space with non-Lipschitzian coefficients.

Keywords:

Fractional calculus, Mild solution, Semigroup of bounded linear operator, Stochastic differential equation with time delay, Young integral

Mathematics Subject Classification:

60G22, 45N05, 34G20, 60H15, 60G15, 35R12
  • Pages: 187-197
  • Date Published: 01-07-2022
  • Vol. 10 No. 03 (2022): Malaya Journal of Matematik (MJM)

R. Hilfer, Application of Fractional Calculus in Physics, New Jersey: World Scientific, (2001).

A.M. SAyed Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine Journal of Mathematics, 11(3)(2022), 74-85.

J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus, Dordrecht, The Netherlands: Springer, (2007).

N. A. Khan, A. Ara, A. Mahmood, Approximate solution of time-fractional chemical engineering equations: a comparative study, Int. J. Chem. Reactor Eng., 8(2010).

Mahmoud M. El-Borai, Wagdy G. El-SAyed, A.A. Badr and A. TAReK S.A., Initial value problem for stochastic hybrid Hadamard fractional differential equation, Journal of Advances in Mathematics, 16(2019), 8288-8296.

K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41(1) (2010) , 9-12.

D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204(1996), 609-625.

J. H. HE, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol, 15(2)(1999), 86-90.

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, (1992).

Francesca Biagini, Yaozhong Hu, Bernt Oksendal and Tusheng Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag London, (2008).

M. FerRante AND C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter $H>1 / 2$, Bernouilli, 12 (2006), 85-100.

A. Neuenkirch, I. Nourdin and S. Tindel, Delay Equations driven by Rough Paths, Elec. J. Probab., 13 (2008), 2031-2068.

T. Caraballo, M. J. Garrido-Atienza, and T. Taniguchi, The Existence and Exponential Behavior of Solutions to Stochastic delay Evolution Equations with a Fractional Brownian Motion, Nonlinear Analysis, 74 (2011), 3671-3684.

Anatoly A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, (2006).

D. Nualart, The Malliavin Calculus and Related Topics, Second Edition, Springer-Verlag, Berlin, (2006).

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., (1971), 155-167 .

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations II, $J$. Math. Kyoto Univ., (1971), 553-563 .

S. Altay and Uwe Schmack, Lecture notes on the Yamada- Watanabe Condition for the pathwise uniqueness of solutions of certain stochastic Differential Equations, (2013).

JinRong Wang, Michal FečKan and Yong Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynamics of PDE, $mathbf{8}(2011)$, 345-361.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2022

How to Cite

Ibrahim, A. M. S. “Stochastic Delayed Fractional-Order Differential Equations Driven by Fractional Brownian Motion”. Malaya Journal of Matematik, vol. 10, no. 03, July 2022, pp. 187-9, doi:10.26637/mjm1003/001.