Skew codes over the split quaternions

Downloads

DOI:

https://doi.org/10.26637/mjm1301/001

Abstract

In this paper, the structures of linear codes over the split quaternions with coefficients from Z3,Hs,3=Z3+iZ3+jZ3+kZ3 are determined with i2=1,j2=k2=1,ij=k=ji,jk=i=kj,ki=j=ik,ijk=1. It is shown that the split quaternions over Z3 decompose into two parts from Z3+iZ3 with idempotent coefficients. The structures of the skew cyclic and skew constacyclic codes over Hs,3 are obtained.

Keywords:

Skew constacyclic code, split quaternions

Mathematics Subject Classification:

11R52, 94B05
  • Pages: 1-7
  • Date Published: 01-01-2025
  • Vol. 13 No. 01 (2025): Malaya Journal of Matematik (MJM)

PIAGGIO, H. T. H., The Significance and Development of Hamilton’s Quaternions, Nature, 152(1943), 553-555.

KANDASAMY, W. B. V., On the finite Quaternion rings and skew fields, Acta Ciencia Indica, 2(2000), 133-135.

AKBIYIK, S. AND ERSOY, B. A., Cyclic codes over a non-commutative ring, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), IEEE, 2017.

KANG, S. M., MUNIR, M., NIZAMI, A. R., ALI, M. AND NAZEER, W., On elements of split quaternions over Zp, Global Journal of Pure and Applied Mathematics, 12(2016), 4253-4271.

Metrics

PDF views
82
Jan 2025Jul 2025Jan 202651

Published

01-01-2025

How to Cite

Dertli, A., and Y. Cengellenmis. “Skew Codes over the Split Quaternions”. Malaya Journal of Matematik, vol. 13, no. 01, Jan. 2025, pp. 1-7, doi:10.26637/mjm1301/001.