Uncertainty principles for the continuous wavelet transform associated with a Bessel type operator on the half line
Downloads
DOI:
https://doi.org/10.26637/mjm1203/007Abstract
This paper presents uncertainty principles pertaining to generalized wavelet transforms associated with a second-order differential operator on the half line, extending the concept of the Bessel operator. Specifically, we derive a Heisenberg-Pauli-Weyl type uncertainty principle, as well as other uncertainty relations involving sets of finite measure
Keywords:
Bessel type transform, generalized continuous wavelet transforms, uncertainty principlesMathematics Subject Classification:
42B10, 43A32- Pages: 290-306
- Date Published: 01-07-2024
- Vol. 12 No. 03 (2024): Malaya Journal of Matematik (MJM)
A. Abouelaz, R. Daher, and El. M. Loualid, An L p-L q-version of Morgan's theorem for the generalized Bessel transform, Int. J. Math. Model. Comput., 06(01)(2016), 29-35.
A. Abouelaz, R. DAHER, and N. Safouane, Donoho-Stark uncertainty principle for the generalized Bessel transform, Malaya J. Mat., 4(3)(2016), 513-518.
R. F. al Subaie and M. A. Mourou, The continuous wavelet transform for a Bessel type operator on the half line, Math. Stat., 1(2013), 196-203.
R. F. Al Subaie and M. A. Mourou,Transmutation operators associated with a Bessel type operator on the half line and certain of their applications, Tamsui Oxford J. Inf. Math. Sci., 29(3)(2013), 329-349.
W. O. AmreIn And A. M. BerthiER, On support properties of $L_p$-functions and their Fourier transforms, $J$. Funct. Anal., 24(3)( 1977), 258-267.
B. Amri, A. Hammami, and L. Rachdi, Uncertainty principles and time frequency analysis related to the Riemann-Liouville operator, Ann. dell'Universita di Ferrara., 65(1)( 2019), 139-170.
C. Baccar, Uncertainty principles for the continuous Hankel Wavelet transform, Integr. Transform. Spec. Funct., 27(6)(2016), 413-429.
M. Benedicks , On Fourier transforms of functions supported on sets of finite Lebesgue measure, $J$. Math.Anal. Appl., 106(1985), 180-183.
W. R. Bloom AND H. HEYER, Harmonic analysis of probability measures on hypergroups, volume 20. Walter de Gruyter, 2011.
A. Bonami, B. Demange, and P. Jaming. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Matemàtica Iberoam., 19 (2003), 23-55.
H. Chebli, Operateurs de translation generalisée et semi-groupes de convolution, Théorie du potentiel et analyse harmonique. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, 35-59.
M. Cowling And J. F. Price, Generalisations of Heisenberg's inequality, In Harmon. Anal, Springer Berlin Heidelberg, 1983, 443-449.
M. Cowling, A. Sitaram, and M. Sundari, Hardy's uncertainty principle on semi-simple groups, Pacific J. Math., 192(2)(2000), 293-296.
R. Daher, M. El Hamma, and S. El Ouadih , An analog of Titchmarsh's theorem for the generalized Fourier-Bessel transform, Lobachevskii J. Math. 37(2016), 114-119.
R. Daher, M. El Hamma, and S. El Ouadih, Generalization of Titchmarsh's theorem for the generalized
D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math., 49(3)( 1989), 906-931.
G. B. Folland and A. Sitaram , The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3(3) (1997), 207-238.
S. Ghobber, Time-frequency concentration and localization operators in the Dunkl setting, J. PseudoDifferential Oper. Appl., (2016), 1-19.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cyrine Baccar, Aicha Kabache
This work is licensed under a Creative Commons Attribution 4.0 International License.