Some coefficient properties of a certain family of regular functions associated with lemniscate of Bernoulli and Opoola differential operator
Downloads
DOI:
https://doi.org/10.26637/mjm1202/007Abstract
Abstract. In this exploration, we introduce a certain family of regular (or analytic) functions in association with the righthalf of the Lemniscate of Bernoulli and the well-known Opoola differential operator. For the regular function \(f\) studied in this work, some estimates for the early coefficients, Fekete-Szegö functionals and second and third Hankel determinants are established. Another established result is the sharp upper estimate of the third Hankel determinant for the inverse function \(f^{-1}\) of \(f\).
Keywords:
Regular function, Lemniscate of Bernoulli, Fekete-Szegö functional, inverse function, coefficient bounds, Hankel determinant, Opoola differential operatorMathematics Subject Classification:
30C45, 30C50- Pages: 218-228
- Date Published: 01-04-2024
- Vol. 12 No. 02 (2024): Malaya Journal of Matematik (MJM)
J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17(1)(1915), 12-22. https://doi.org/10.2307/2007212 DOI: https://doi.org/10.2307/2007212
F.M. AL-Oboudi, On univalent functions defined by a generalised Sălăgean operator, Int. J. Math. Math. Sci., 2004(27)(2004), 1429-1436. https://doi.org/10.1155/S0161171204108090 DOI: https://doi.org/10.1155/S0161171204108090
R.O. Ayinla, On some new results of a subclass of univalent functions, Researchjournali's J. Math., 4(1)(2017), $1-6$.
R.O. Ayinla and T.O. Opoola, The Fekete Szegö functional and second Hankel determinant for a certain subclass of analytic functions, Appl. Math., 10(2019), 1071-1078. https://doi.org/10.4236/am.2019.1012074 DOI: https://doi.org/10.4236/am.2019.1012074
R.O. Ayinla and T.O. Opoola, Initial coefficient bounds and second Hankel determinant for a certain class of bi-univalent functions using Chebyshev polynomials, Gulf J. Math., 14(1)(2023), 160-172. https://doi.org/10.56947/gjom.v14i1.1092 DOI: https://doi.org/10.56947/gjom.v14i1.1092
K.O. Babalola and T.O. Opoola, On the coefficients of a certain class of analytic functions. In: Advances in Inequal. Ser. (S.S. Dragomir and A. Sofo, eds.), Nova Science Publishers Inc., Hauppauge, New York, 2008, $1-13$.
J. DZIOK, R.K. Raina And J. SoKót, On a class of starlike functions related to a shelllike curve connected with Fibonacci numbers, Math. Comp. Model., 57(2013), 1203-1211. https://doi.org/10.1016/j.mcm.2012.10.023 DOI: https://doi.org/10.1016/j.mcm.2012.10.023
M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc., 8(1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85 DOI: https://doi.org/10.1112/jlms/s1-8.2.85
S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10(3)(2017), 1-12. https://doi.org/10.1142/S1793557117500644 DOI: https://doi.org/10.1142/S1793557117500644
A.W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, Florida, (1983).
W. Hengartner and G. Schober, On schlicht mappings to domain convex in one direction, Commentarii. Mathematici. Helvetici., 45(1)(1970), 303-314. https://doi.org/10.1007/BF02567334 DOI: https://doi.org/10.1007/BF02567334
W. JANOwski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28(3)(1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326 DOI: https://doi.org/10.4064/ap-28-3-297-326
S. KanaS And D. Rǎducanu, Some classes of analytic functions related to conic domains, Math. Slovaca., 64(5)(2014), 1183-1196. https://doi.org/10.2478/s12175-014-0268-9 DOI: https://doi.org/10.2478/s12175-014-0268-9
F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1)(1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 DOI: https://doi.org/10.1090/S0002-9939-1969-0232926-9
M.G. Khan, B. Ahmad, W.K. Mashwani, T.G. Shaba and M. ARIF, Third Hankel determinant problem for certain subclasses of analytic functions associated with nephroid domain, Earthline J. Math. Sci., 6(2)(2021), 293-308. https://doi.org/10.34198/ejms.6221.293308 DOI: https://doi.org/10.34198/ejms.6221.293308
K. KuroKi And S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J., 1(2)(2012), $127-131$.
A.O. Lasode, A.O. AJiboye and R.O. Ayinla, Some coefficient problems of a class of close-to-star functions of type $alpha$ defined by means of a generalized differential operator, Int. J. Nonlinear Anal. Appl., 14(1)(2023), 519-526. http://dx.doi.org/10.22075/ijnaa.2022.26979.3466
A.O. Lasode and T.O. Opoola, Coefficient problems of a class of $q$-starlike functions associated with $q$-analogue of Al-Oboudi-Al-Qahtani integral operator and nephroid domain, J. Class. Anal., 20(1)(2022), 35-47. https://doi.org/10.7153/jca-2022-20-04 DOI: https://doi.org/10.7153/jca-2022-20-04
A.O. Lasode And T.O. Opoola, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by $q$-differential operator, Gulf J. Math., 11(2)(2021), 36-43. https://doi.org/10.56947/gjom.v11i2.583 DOI: https://doi.org/10.56947/gjom.v11i2.583
E.H. Lockwood, A Book of Curves, The Syndics of The Cambridge University Press, London, (1961). DOI: https://doi.org/10.1017/CBO9780511569340
R.K. MAURYa AND P. Sharma, A class of starlike functions associated with petal like region on the positive half of complex plane, J. Indian Math. Soc., 87(3)(2020), 165-172. https://doi.org/10.18311/jims/2020/25449 DOI: https://doi.org/10.18311/jims/2020/25449
M. Obradovic and N. TUnESkI, On third order Hankel determinant for inverse functions of certain classes of univalent functions, Eur. J. Math. Appl., 2(2)(2022), 1-7.
T.O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, Int. J. Math. Anal., 11(18)(2017), 869-876. https://doi.org/10.12988/ijma.2017.7232 DOI: https://doi.org/10.12988/ijma.2017.7232
H. Orhan, G. Murugusundaramoorthy and M. ÇaĞLar, The Fekete-Szegö problems for subclass of bi-univalent functions associated with sigmoid function. Facta Universitatis (Niš) Ser. Math. Inform., 37(3)(2022), 495-506. DOI: https://doi.org/10.22190/FUMI201022034O
E.A. Oyekan and A.O. Lasode, Estimates for some classes of analytic functions associated with Pascal distribution series, error function, Bell numbers and $q$-differential operator, Nigerian J. Math. Appl., 32(2022), 163-173. http://www.njmaman.com/articles/2022/PAPER14.pdf
E.A. Oyekan, T.A. Olatunit and A.O. Lasode, Applications of $(p, q)$-Gegenbauer polynomials on a family of bi-univalent functions, Earthline J. Math. Sci., 12(20)(2023), 271-284. https://doi.org/10.34198/ejms.12223.271284 DOI: https://doi.org/10.34198/ejms.12223.271284
E.A. Oyekan and T.O. Opoola, On subclasses of bi-univalent functions defined by generalized Sălăgean operator related to shell-like curves connected with Fibonacci numbers, Libertas Math. (new series), 41(2021), 1-20.
C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, Proc. Lond. Math. Soc., 41(1)(1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111 DOI: https://doi.org/10.1112/jlms/s1-41.1.111
M.H. PRIYA AND R.B. Sharma, On a class of bounded turning functions subordinate to a leaf-like domain, J. Phy. Conf. Ser., 1000(1)(2018), 1-14. https://doi.org/10.1088/1742-6596/1000/012056 DOI: https://doi.org/10.1088/1742-6596/1000/1/012056
G.S. SǍlăgean, Subclasses of univalent functions, Lect. Notes Math., 1013(1983), 362-372. https://doi.org/10.1007/BFb0066543 DOI: https://doi.org/10.1007/BFb0066543
K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Math., 27(5)(2016), 923-939. https://doi.org/10.1007/s13370-015-0387-7 DOI: https://doi.org/10.1007/s13370-015-0387-7
J. SOKÓL AND J. STANKIEWICZ, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej. Mat., 19(1996), 101-105.
P.D. TUAN AND V.V. ANH, Radii of starlikeness and convexity for certain classes of analytic functions, $J$. Math. Anal. Appl., 64(1)(1978), 146-158. https://doi.org/10.1016/0022-247X(78)90027-6 DOI: https://doi.org/10.1016/0022-247X(78)90027-6
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rasheed Olawale Ayinla, Ayotunde Olajide Lasode
This work is licensed under a Creative Commons Attribution 4.0 International License.