Polynomial stability of a Rayleigh system with distributed delay

Downloads

DOI:

https://doi.org/10.26637/mjm1204/004

Abstract

We consider the Rayleigh beam equation with a dynamic control moment with a distributed
delay term in the dynamic control. We establish the strong stability of this system and then
prove that the system with delay has the same rational decay rate as the system without delay.
But we show that it is not exponentially stable. Our contribution is the introduction of the
distributed delay term in the control.

Keywords:

Rayleigh beam equation, Dynamic boundary control, Distributed delay, Spectral analysis

Mathematics Subject Classification:

34D20, 35B40, 35L70
  • Innocent OUEDRAOGO Laboratoire de Math\'{e}matiques et d'Informatique(LAMI), Ecole Doctorale Sciences et Technologies\, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou Burkina Faso https://orcid.org/0009-0002-5156-2284
  • Désiré SABA Laboratoire de Math\'{e}matiques et d'Informatique(LAMI), Ecole Doctorale Sciences et Technologies\, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou Burkina Faso
  • Cheikh SECK Laboratoire d’Analyse Mathématiques, Statistiques et Applications de la Faculté des Sciences et Techniques (FST),Université Cheikh Anta Diop, BP 5036 Dakar Sénégal
  • Gilbert BAYILI Laboratoire de Math\'{e}matiques et d'Informatique(LAMI), Ecole Doctorale Sciences et Technologies\, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou Burkina Faso
  • Pages: 388-411
  • Date Published: 01-10-2024
  • Vol. 12 No. 04 (2024): Malaya Journal of Matematik (MJM)

Gilbert Bayili, Serge Nicaise, and Roland Silga. Rational energy decay rate for the wave

equation with delay term on the dynamical control. Journal of Mathematical Analysis and

Applications, 495(1):124693, 2021.

Claude D Benchimol. A note on weak stabilizability of contraction semigroups. SIAM journal

on Control and Optimization, 16(3):373–379, 1978.

Alexander Borichev and Yuri Tomilov. Optimal polynomial decay of functions and operator

semigroups. Mathematische Annalen, 347:455–478, 2010.

Filippo Dell’Oro and David Seifert. A short elementary proof of the gearhart-pr" uss theorem

for bounded semigroups. arXiv preprint arXiv:2206.06078, 2022.

Shaul R Foguel. Powers of a contraction in hilbert space. 1963.

Haakan Hedenmalm. On the uniqueness theorem of holmgren. Mathematische Zeitschrift,

(1-2):357–378, 2015.

Falun Huang. Strong asymptotic stability of linear dynamical systems in banach spaces. Journal

of Differential Equations, 104(2):307–324, 1993.

Denis Mercier, Serge Nicaise, Mohamad Sammoury, and Ali Wehbe. Optimal energy decay

rate of rayleigh beam equation with only one dynamic boundary control. Boletim da Sociedade

Paranaense de Matematica, 35(3):131–171, 2017.

Higidio Portillo Oquendo and Patricia Sánez Pacheco. Optimal decay for coupled waves with

kelvin–voigt damping. Applied Mathematics Letters, 67:16–20, 2017.

Innocent Ouedraogo and Gilbert Bayili. Exponential stability for damped shear beam model

and new facts related to the classical timoshenko system with a distributed delay term. Journal

of Mathematics research, 15(3):45, 2023.

Innocent Ouedraogo and Gilbert Bayili. Stability of a timoshenko system with constant delay.

International Journal of Applied Mathematics, 36(2):253, 2023.

INNOCENT OUEDRAOGO and GILBERT BAYILI. Stability for shear beam model and

new facts related to the classical timoshenko system with variable delay. Journal of Nonlinear

Evolution Equations and Applications ISSN, 2024(3):37–54, 2024.

Roland SiILGA and Gilbert BAYILI. Stabilization for 1d wave equation with delay term on the

dynamical control. Journal de Mathématiques Pures et Appliquées de Ouagadougou (JMPAO),

(01), 2022.

Roland Silga and Gilbert Bayili. Polynomial stability of the wave equation with distributed

delay term on the dynamical control. Nonautonomous Dynamical Systems, 8(1):207–227, 2021.

Roland Silga, Bila Adolphe Kyelem, and Gilbert Bayili. Indirect boundary stabilization with

distributed delay of coupled multi-dimensional wave equations. Annals of the University of

Craiova-Mathematics and Computer Science Series, 49(1):15–34, 2022.

Béla Szőkefalvi-Nagy and Ciprian Foia. Analyse harmonique des opérateurs de l’espace de

Hilbert. Akademiai Kiado, 1967.

Jun-min Wang, Gen-qi Xu, and Siu-Pang Yung. Exponential stability of variable coefficients

rayleigh beams under boundary feedback controls: a riesz basis approach. Systems & control

letters, 51(1):33–50, 2004.

Ali Wehbe. Rational energy decay rate for a wave equation with dynamical control. Applied

mathematics letters, 16(3):357–364, 200

  • NA

Metrics

Metrics Loading ...

Published

01-10-2024

How to Cite

OUEDRAOGO, I., Désiré SABA, Cheikh SECK, and Gilbert BAYILI. “Polynomial Stability of a Rayleigh System With Distributed Delay”. Malaya Journal of Matematik, vol. 12, no. 04, Oct. 2024, pp. 388-11, doi:10.26637/mjm1204/004.