Characterizations for pseudoparalel submanifolds of Lorentz-Sasakian space forms

Downloads

DOI:

https://doi.org/10.26637/mjm1201/003

Abstract

In this article, total geodesic submanifolds for Lorentz-Sasakian space forms are investigated. For these submanifolds, pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparallel invariant submanifolds have been studied and many new results have been obtained. In addition, necessary and sufficient conditions have been obtained for these submanifolds to be total geodesic on the concircular and projective curvature tensors.

Keywords:

Lorentz-Sasakian Space Forms, Lorentzian Manifold, Total Geodesic Submanifold

Mathematics Subject Classification:

53C15, 53C44, 53D10
  • Pages: 31-42
  • Date Published: 01-01-2024
  • Vol. 12 No. 01 (2024): Malaya Journal of Matematik (MJM)

D. E. BLAIR, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010. DOI: https://doi.org/10.1007/978-0-8176-4959-3

P. ALEGRE, D.E. BLAIR and A. CARRIAZO, Generalized Sasakian space form, Israel Journal of Mathematics, 141(2004), 157-183. DOI: https://doi.org/10.1007/BF02772217

P. ALEGRE and A. CARRIAZO, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41(1)(2018), 1-14. DOI: https://doi.org/10.1007/s40840-015-0215-0

M. A. LONE and I. F. HARRY, Ricci Solition on Lorentz-Sasakian Space Forms, Journal of Geometry and Physics, 178(2022), 104547. DOI: https://doi.org/10.1016/j.geomphys.2022.104547

A. SARKAR, U.C. DE, Some curvature properties of generalized Sasakian space forms, Lobachevskii Journal of Mathematics, 33(1)(2012), 22-27. DOI: https://doi.org/10.1134/S1995080212010088

M. ATÇEKEN, On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Math. Analysis and Applications, 6(1)(2014), 1-8. DOI: https://doi.org/10.11648/j.pamj.s.2015040102.18

P. ALEGRE, A. CARRIAZO, Structures on generalized Sasakian-space-form, Differential Geometry and its Applications, 26(2008), 656-666. DOI: https://doi.org/10.1016/j.difgeo.2008.04.014

M. BELKHELFA, R. DESZCZ and L. VERSTRAELEN, Symmetry properties of Sasakianspace-forms, Soochow Journal of Mathematics, 31(2005), 611-616.

M. ATÇEKEN, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean Journal of Mathematics, 30(1)(2022), 175-185.

M. ATÇEKEN and T. MERT, Characterizations for totally geodesic submanifolds of a $K$-paracontact manifold, AIMS Mathematics, 6(7)(2021), 7320-7332. DOI: https://doi.org/10.3934/math.2021430

M. ATÇEKEN, Certain Results on Invariant Submanifolds of an Almost Kenmotsu $(k, mu, v)$-Space, Arabian Journal of Mathematics, 10(2021), 543-554. DOI: https://doi.org/10.1007/s40065-021-00339-9

  • NA

Metrics

Metrics Loading ...

Published

01-01-2024

How to Cite

Mert, T., and M. Atçeken. “Characterizations for Pseudoparalel Submanifolds of Lorentz-Sasakian Space Forms”. Malaya Journal of Matematik, vol. 12, no. 01, Jan. 2024, pp. 31-42, doi:10.26637/mjm1201/003.