Coherent ideals of 1-distributive lattices

Downloads

DOI:

https://doi.org/10.26637/mjm1301/007

Abstract

In this paper, we study coherent ideals of pseudocomplemented 1-distributive lattices. We give a set of conditions for an ideal to be a coherent ideal. We also prove some conditions for a pseudocomplemented 1-distributive lattice to be weakly Stone lattice.

Keywords:

Lattices, 1-distributive lattices, pseudocomplemented lattices, ideal, filter

Mathematics Subject Classification:

06A12, 06A99, 06B10
  • Chandrani Nag Department of Mathematics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.
  • Pages: 54-62
  • Date Published: 01-01-2025
  • Vol. 13 No. 01 (2025): Malaya Journal of Matematik (MJM)

M. SAMBASIVA RAO, Median Prime Ideals of Pseudocomplemented Distributive Lattices, Archivum Mathematicum (BRNO), Tomus 58 (2022), 213-226.

T.S. BLYTH, Ideals and Filters of Pseudocomplemented Semilattices, Proceedings of the Edinburgh Mathematicsl Society, 23 (1980), 301–316.

J.C. VARLET, A Generalization of the Notion of Pseudo-complementedness. Bulletin de ln Soci´et´e des Sciences de Li`ege, Vol. 36 (1967), 149-158.

GR ¨ATZER, G., Lattice Theory. First Concepts and Distributive Lattices, W. H. Freeman, San Francisco, 1971.

GR ¨ATZER, G., General Lattice Theory, Birkh¨auser Verlag Basel, 1998.

W.H. CORNISH, Congruences on Distributive Pseudo-complemented lattices, Bull. Austral. Math. Soc. 82 (1973), 161-179.

C. NAG, S.N. BEGUM AND M.R. TALUKDER, Kernel Ideals and Cokernel Filters of a P-algebra, Acta Math. Hungar., 154(2) (2018), 279-288.

C. NAG, S.N. BEGUM AND M.R. TALUKDER, A Note on Normal and Comaximal Lattices,

Thammasat International Journal of Science and Technology, 21(1) (2016), 1-5.

SULTANA R., ALI M.A. AND NOOR A.S.A., Some Properties of 0-Distributive and 1-Distributive Lattices,Annals of Pure and Applied Mathematics, 2(1) (2012), 168-175.

  • NA

Metrics

PDF views
29
Jan 2025Jul 2025Jan 202622

Published

01-01-2025

How to Cite

Nag, C. “Coherent Ideals of 1-Distributive Lattices”. Malaya Journal of Matematik, vol. 13, no. 01, Jan. 2025, pp. 54-62, doi:10.26637/mjm1301/007.