On Kenmotsu metric spaces satisfying some conditions on the \(W_7\)-curvature tensor
Downloads
DOI:
https://doi.org/10.26637/mjm1104/008Abstract
This research article is about the geometry of the Kenmotsu manifold. Some important properties such as the \(W_{7}\cdot W_{5}=0\), \(W_{7}\cdot W_{6}=0\), \(W_{7}\cdot W_{7}=0\) , \(W_{7}\cdot W_{8}=0\), \( W_{7}\cdot W_{9}=0\) and \(\ W_{7}\cdot W_{0}^{\star }=0\) curvature conditions of the Kenmotsu manifold have been investigated.
Keywords:
kenmotsu manifold, n-Einstein manifold, Einstein manifold, Riemannian curvature tensor, \(\eta\)-Einstein manifoldMathematics Subject Classification:
53C25, 53C35- Pages: 447-456
- Date Published: 01-10-2023
- Vol. 11 No. 04 (2023): Malaya Journal of Matematik (MJM)
ABDULSATTAR, D.B , On conharmonic transformations in general relativity, Bull Calcutta Math. Soc., 41(1966), 409–416.
ATC¸EKEN, M., UYGUN, P , Characterizations for totally geodesic submanifolds of (k,µ)-paracontact metric manifolds, Korean J. Math., 28(2020), 555–571.
AYAR,G., CHAUBEY, S. K , M-projective Curvature Tensor Over Cosymplectic Manifolds, Differential Geometry, Dynamical Systems, 21(2019), 23–33.
BLAIR, D.E , Contact Manifolds in Riemannian Geometry, Lecture Note in Mathematics, Springer-Verlag, Berlin-New York, 509, 1976. DOI: https://doi.org/10.1007/BFb0079307
DE, U. C., PATHAK, G , On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35(2004), 159–165.
KENMOTSU, K , A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93–103. DOI: https://doi.org/10.2748/tmj/1178241594
KOBAYASHI, K., NOMIZU, K , Foundations of Differential Geometry, Wiley-Interscience, New York, 1963.
MERT, T , Characterization of some special curvature tensor on Almost C(a)-manifold, Asian Journal of Mathematics and Computer Research, 29(1)(2022), 27–41. DOI: https://doi.org/10.56557/ajomcor/2022/v29i17629
MERT, T., ATC¸EKEN, M., UYGUN, P , Semi-symmetric almost C(a) -manifold on some curvature tensors, Gulf Journal of Mathematics, 14(2)(2023), 101–114. DOI: https://doi.org/10.56947/gjom.v14i2.1179
MERT, T., ATC¸EKEN, M., UYGUN, P., PANDEY, S , Almost n-Ricci Solitons on the Pseudosymmetric Lorentzian Para-Kenmotsu Manifolds C(a) -manifold on some curvature tensors, Earthline Journal of Mathematical Sciences, (2023). DOI: https://doi.org/10.34198/ejms.12223.183206
MISHRA, R. S , Structure on a Differentiable Manifold and Their Applications, Chandrama Prakashan, 50-A Bairampur House Allahabad, (1984).
POKHARIYAL, G. P , Relativistic significance of curvature tensors, Internat. J. Math. Sci., 5(1)(1982), 133–139. DOI: https://doi.org/10.1155/S0161171282000131
POKHARIYAL, G. P., MISHRA, R. S , Curvature tensors and their relativistic significance II, Yokohama Math. J., 19(2)(1971), 97–103.
SASAKI, S , Almost Contact Manifolds, 1,2,3, A Lecture note, Tohoku University, (1965, 1967, 1968).
TANAKA, N , On non-degenerate real hypersurfaces, graded Lie algebra and Cartan connections, Japanese Journal of Mathematics: New series, 2(1)(1976), 131–190. DOI: https://doi.org/10.4099/math1924.2.131
TANNO, S , Variational problems on contact Riemannian manifolds, Transactions of the American Mathematical Society, 314(1)(1989), 349–379. DOI: https://doi.org/10.1090/S0002-9947-1989-1000553-9
TRIPATHI, M. M., GUPTA, P , T−curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies, 4(1)(2011),117-129.
UYGUN, P., ATC¸EKEN, M , On (k,µ) -paracontact metric spaces satisfying some conditions on the $W_0$ −curvature tensor, NTMSCI, 9(2)(2021), 26–37. DOI: https://doi.org/10.20852/ntmsci.2021.417
WEBSTER, S. M , Pseudo-Hermitian structures on a real hypersurface, Journal of Differential Geometry, 13(1)(1978), 25-41. DOI: https://doi.org/10.4310/jdg/1214434345
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pakize Uygun, Mehmet Atceken
This work is licensed under a Creative Commons Attribution 4.0 International License.