Nevanlinna theory for the upper half disc-I
Downloads
DOI:
https://doi.org/10.26637/mjm1002/007Abstract
In this paper, we prove the Poisson Integral theorem and Poisson-Jenson formula for the upper half disc and consequently introduce the proximity function, the counting function and the characteristic function of a meromorphic function in the upper half disc which are basic functions of Nevanlinna theory.
Keywords:
Nevanlinna theory, Upper half disc, Meromorphic functions, Poisson integral formula, Characteristic functionsMathematics Subject Classification:
30D35- Pages: 171-177
- Date Published: 01-04-2022
- Vol. 10 No. 02 (2022): Malaya Journal of Matematik (MJM)
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
C. C. YANG AND H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer, Dordrecht, 2004.
W. Cherry, Z. Ye, Nevanlinna's Theory of Value Distribution, Springer, 2001.
A. A. Goldber, I. V. OstrovskiI, Value Distribution of Meromorphic Functions, AMS Translations of Mathematical Monographs, V. 236 (2008).
M. A. Fedorov And A. F. Grishin, Some Questions of the Nevanlinna Theory for the Complex HalfPlane, Mathematical Physics, Analysis and Geometry, 1(1998), 223-271.
J. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press, Beijing(Springer), (2010).
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Subhas S. BHOOSNURMATH, Renukadevi S. DYAVANAL, Mahesh BARKI
This work is licensed under a Creative Commons Attribution 4.0 International License.