Study on generalized pseudo conharmonically symmetric manifolds

Downloads

DOI:

https://doi.org/10.26637/mjm904/010

Abstract

In this paper, a type of Riemannian manifold, namely Generalized pseudo conharmonically symmetric manifold is studied. Several geometric properties of such spaces are studied. By imposing different restrictions on the conharmonic curvature tensor, we have obtained several properties. If the conharmonic curvature tensor is harmonic then the form of the scalar curvature is obtained. Also, the relations among the 1-forms under various conditions are obtained.

Keywords:

Pseudo symmetry, Second Bianchi Identity, Conharmonic curvature tensor, Harmonic curvature tensor

Mathematics Subject Classification:

53C20, 53C21, 53C44
  • Akshoy Patra Government College of Engineering and Textile Technology, Berhampore, 742101, Dist. Murshidabad, West Bengal, India.
  • Pages: 259-264
  • Date Published: 01-10-2021
  • Vol. 9 No. 04 (2021): Malaya Journal of Matematik (MJM)

M. Ali, Q. Khan, M. Vasiulla, On generalized pseudo symmetric manifolds,Bull. Cal. Math. Soc., 113(4) (2021), 353-362.

É. Cartan, Sur une classe remarquable d'espaces de Riemann, I,Bull. de la Soc. Math. de France, 54, (1926), 214-216.

É. Cartan, Sur une classe remarquable d'espaces de Riemann, II, Bull. de la Soc. Math. de France, 55, (1927), 114-134.

M. С. Chaki, On pseudosymmetric manifolds,An. Sti. Ale Univ., "AL. I. CUZA" Din Ias, 33 (1987), 53-58.

M. C. Chaki, On pseudosymmetric Ricci symmetric manifolds, Bulg. J. Phys., 15 (1988), 526-531.

M. C. Chaki, On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen, 45 (1994), 305-312.

R. Deszcz, On pseudosymmetric spaces,Bull. Soc. Math. Belg. Sér. A, 44 No. 1, (1992), 1-34.

Y. Ishir, On conharmonic transformations, Tensor, N. S., 11, (1957), 73-80.

J. Kim, A type of conformal curvature tensor,Far East J. Math. Sci., 99 No. 1, (2016), 61-74.

J. Kim, On pseudo semi-conformal symmetric manifolds,Bull. Korean. Math. Soc., 54 ,(2017), 177-186.

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 ,(1956), 47-87.

A. A. Shaikh, R. Deszcz, M. Hotloś, J. Jelowicki, H. Kundu, On pseudosymmetric manifolds,Publ. Math. Debrecen, 86(3-4), (2015), 433-456.

A. A. Shaikh, S. K. Hui, On weakly conharmonically symmetric manifolds,Tensor, N. S., 70, No. 2, (2008), 119-134.

A. A. Shaikh, H. Kundu, On equivalency of various geometric structures, J. Geom., 105, (2014), 139-165.

A. A. Shaikh, I. Roy, S. K. Hui, On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces, Global J. Science Frontier Research, 10(4), (2010), 28-31.

L. TAmÁssy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds,Coll. Math. Soc., J. Bolyai, 56, (1989), 663-670.

Z. I. Szabó, Stucture theorems on Riemannian spaces satisfying $R(X, Y) cdot R=0$, I, The local version, $J$. Diff. Geom., 17, (1982), 531-582.

A. G. Walker, On Ruse's space of recurrent curvature ,Proc. of London Math. Soc., 52, (1950), 36-54.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2021

How to Cite

Akshoy Patra. “Study on Generalized Pseudo Conharmonically Symmetric Manifolds”. Malaya Journal of Matematik, vol. 9, no. 04, Oct. 2021, pp. 259-64, doi:10.26637/mjm904/010.